Abstract:
Disclosed herein are curable glass ionomer compositions that include a first paste and a second paste, and methods for using the disclosed compositions. The first paste includes water, a polyacid, and a non acid-reactive filler. The second paste includes water, an acid-reactive filler; and non-aggregated, water-miscible, nano-sized silica particles having at least 25% surface coverage of the particles with a silane. The composition is essentially free of a resin. In some embodiments, the water content of the first paste and the second paste of the paste/paste GI composition disclosed herein is less than 20% by weight, based on the total weight of the composition.
Abstract:
The present disclosure provides a composite material, a method of making and using the composite material and dental products made by hardening the composite material. The composite material includes a polymerizable component, ceramic fibers and nanoclusters. Each of the ceramic fibers of the composite material has a length and where the length of fifty percent of the ceramic fibers, based on a total number of the ceramic fibers, is at least 50 micrometers and the length of ninety percent of the ceramic fibers, based on the total number of the ceramic fibers, is no greater than 500 micrometers. The composite material can also include discrete non-fumed metal oxide nanoparticles. The composite material can be hardened to become any one of a dental restorative, a dental adhesive, a dental mill blank, a dental cement, a dental prostheses, an orthodontic device, an orthodontic adhesive, a dental casting material or a dental coating.
Abstract:
Dental compositions and methods of formulating a dental composition are described. In one embodiment, the dental composition comprises a polymerizable resin comprising one or more ethylenically unsaturated monomers or oligomers and nano-particles. The nanoparticles have a refractive index of at least 1.600 and an average discrete or aggregate particle size of no greater than 100 nm. The dental composition further comprises inorganic metal oxide filler having a discrete or aggregate average particle size of at least 200 nm. The nanoparticles are present at a concentration to provide a refractive index differential between the cured polymerizable resin and inorganic metal oxide filler such that the contrast ratio of the dental composition is at least 40.
Abstract:
The present application is directed to a curable composition and a method for isolating a working area in a patient's mouth. The curable composition can include a borate-crosslinked polysiloxane, at least one ethylenically unsaturated monomer comprising at least two polymerizable groups, and an initiator.
Abstract:
A coating composition and a dental structure are described. The coating composition can include an acidic copolymer having acidic acrylate monomeric units, acidic methacrylate monomeric units, or a combination thereof; a solvent having ethanol and water; and a pigment. The coating composition can comprise two phases and the wt- % of each component is based on the total weight of the composition. The dental structure can include a dental article, and a film on a surface of the dental article, wherein the film is formed by drying the coating composition on the dental article. A method for generating contrast for oral scanning on a dental structure and a method for scanning a dental structure are described.
Abstract:
Dental compositions are described comprising an addition-fragmentation agent of the formula: wherein R1, R2 and R3 are each independently Zm-Q-, a (hetero)alkyl group or a (hetero)aryl group with the proviso that at least one of R1, R2 and R3 is Zm-Q-; Q is a linking group have a valence of m+1; Z is an ethylenically unsaturated polymerizable group; m is 1 to 6; each X1 is independently —O— or —NR4—, where R4 is H or C1-C4 alkyl; and n is 0 or 1. Also described are dental articles prepared from a dental composition comprising an addition-fragmentation agent and methods of treating a tooth surface.
Abstract:
Addition-fragmentation agents of the formula are disclosed having the following functional groups: 1) a labile addition-fragmentation group that can cleave and reform to relieve strain, 2) at least two surface-binding functional groups that associate with the surface of a substrate.
Abstract:
Disclosed herein are non-aqueous compositions including: a flowable Part A including at least one resin and Reactant A; and a flowable Part B including at least one resin and Reactant B; wherein at least one of flowable Part A and flowable Part B further includes a free radically polymerizable resin; wherein at least one of flowable Part A and flowable Part B further includes a free radical initiator system; wherein flowable Part A and flowable Part B are capable of being mixed to provide a flowable mixed composition; wherein when flowable Part A and flowable Part B are mixed, Reactant A and Reactant B are capable of interacting to cause a non-free radical reaction within a first staging time to provide a first staged stable consistency for the mixed composition; wherein Reactant A comprises an acid and Reactant B comprises a base, and upon mixing flowable Part A and flowable Part B, the Reactant A acid is capable of reacting with the Reactant B base in an ionic acid-base reaction; and wherein the mixed composition having the first staged stable consistency is capable of forming a hardened dental composition upon initiation of free radical polymerization.
Abstract:
A radiation curable composition including at least one radiation hardenable component, a photo-initiator, and a filler material having a population of particulates in an amount greater than or equal to 50% by weight of the printable composition. The population of particulates exhibits a median diameter (D50) of greater than or equal to 0.3 micrometer on a volume-average basis as determined using the Particle Size Test Method, and the radiation curable composition exhibits a viscosity of less than or equal to 150 Pa s when measured using the Viscosity Test Method. A method, apparatus, and systems for producing composite articles by selectively exposing a portion of the radiation curable composition to a source of actinic radiation to at least partially cure the exposed portion of the radiation curable composition, thereby forming a hardened layer, preferably by an additive manufacturing process such as stereophotolithography, are also described. The composite articles may include composite dental restorations.
Abstract:
The present disclosure provides a composite material. The composite material includes 20 to 40 weight percent (wt. %) of a polymerizable component; 6 to 40 wt. % of ceramic fibers; and 30 to 70 wt. % of nanoclusters. Each of the ceramic fibers has a diameter and a length, the ceramic fibers having an arithmetic mean diameter of 0.3 micrometers to 5 micrometers, and the length of fifty percent of the ceramic fibers (based on a total number of the ceramic fibers) is at least 10 micrometers and the length of ninety percent of the ceramic fibers is no greater than 500 micrometers. The present disclosure also provides a method of making the composite material. The method includes obtaining components and admixing the components to form a composite material. Further, the present disclosure provides a method of using a composite material including placing a composite material near or on a tooth surface, changing the shape of the composite material near or on a tooth surface, and hardening the composite material. In addition, the present disclosure provides dental products and kits. Hardened composite materials can exhibit high strength.