Hybrid solar window and IR absorbing assemblies

    公开(公告)号:US12104827B2

    公开(公告)日:2024-10-01

    申请号:US17919306

    申请日:2021-05-06

    CPC classification number: F24S20/63 F24S10/70 F24S23/74 F24S70/225 F24S2023/84

    Abstract: A hybrid solar window comprises: at least one glazing; a wave-length-selective solar mirror positioned to reflect IR toward an IR absorbing element. The IR absorbing elements comprises a conduit having a respective fluid inlet and fluid outlet, and an IR absorbing compound, wherein the IR absorbing compound is in thermal communication with the conduit. The wavelength-selective solar mirror has an average visible light transmittance of at least 50 percent and an average IR reflectance of at least 50 percent over the wavelength range of 850 to 1150 nanometers, inclusive. The IR absorbing element is configured to transfer thermal energy to a heat transfer fluid circulating through the conduit, wherein the IR absorbing element has an average visible light transmittance of at least 30 percent, and wherein each IR absorbing element has an average IR absorptance of at least 50 percent over the wavelength range 850 to 1150 nanometers, inclusive. Certain IR absorbing elements are also disclosed.

    ANTIMICROBIAL COMPOSITIONS AND ARTICLES AND RELATED METHODS

    公开(公告)号:US20240114905A1

    公开(公告)日:2024-04-11

    申请号:US18274779

    申请日:2022-01-28

    CPC classification number: A01N37/44 A01N25/10 A01P1/00

    Abstract: The composition includes an antimicrobial monomer represented by formula CH2═C(R1)—C(O)—O-Q-N+(R)2CnH2n+1(X—), a non-fluorinated crosslinking monomer having at least two acrylate groups, methacrylate groups, or a combination thereof, a polar monomer having at least one of acrylic acid, methacrylic acid, or a carboxylate salt thereof, and a nonpolar monomer represented by formula CH2═C(R1)—C(O)—O—R2. The antimicrobial monomer, the non-fluorinated crosslinking monomer, the polar monomer, and the nonpolar monomer together account for greater than 95 percent by weight, based on the total weight of the composition. The article includes a film having a plurality of pendent groups represented by formula —C(O)—O-Q-N+(R)2CnH2n+1(X—) covalently bonded in a crosslinked non-fluorinated acrylic network. A method of making an article is also described.

    Solar Energy Absorbing and Radiative Cooling Articles and Methods

    公开(公告)号:US20230213243A1

    公开(公告)日:2023-07-06

    申请号:US17996437

    申请日:2021-04-16

    CPC classification number: F24S23/82 H02S10/30 H02S40/22 F24S10/00

    Abstract: Passive cooling articles may include a first element defining a high absorbance in an atmospheric infrared wavelength range and a high average reflectance in a solar wavelength range. The first element may define a first major surface (114, 214, 314, 414) positioned and shaped to reflect solar energy in the solar wavelength range to an energy absorber (108, 208, 308, 408, 508, 608) spaced a distance from the first major surface (114, 214, 314, 414). The energy absorber (108, 208, 308, 408, 508, 608) may be a heating panel or a photovoltaic cell. A second element may define a high thermal conductivity and thermally coupled to a second major surface (116, 216, 416) of the first element to transfer thermal energy from the second element to the first element to cool the second element.

    Multilayer fluoropolymer films
    28.
    发明授权

    公开(公告)号:US11254104B2

    公开(公告)日:2022-02-22

    申请号:US16086138

    申请日:2017-03-27

    Abstract: A multilayer fluoropolymer film comprising, in order: a first layer comprising a first polymer, the first polymer comprising at least 35 mol percent tetrafluoroethylene comonomer, at least 15 mole percent vinylidene fluoride comonomer, and at least 5 mol percent hexafluoropropylene comonomer, based on the total mol percent of the first polymer; a second layer comprising a second polymer, the second polymer comprising at least 50 mol percent vinylidene fluoride comonomer, based on the total mol percent of the second polymer; and a third layer comprising a third polymer, the third polymer comprising at least 50 mol percent methylmethacrylate comonomer, based on the total mol percent of the third polymer. The multilayer fluoroplymer films are useful for example, in multi-layer film applications (e.g., traffic sign protection, commercial graphic protection, paint protection, windows, windshields, building exteriors, and photo voltaics).

    Multilayer film including hidden fluorescent features

    公开(公告)号:US10914878B2

    公开(公告)日:2021-02-09

    申请号:US16464123

    申请日:2017-12-12

    Abstract: Various embodiments disclosed relate to multilayer films including hidden fluorescent features. The present disclosure includes a multilayer optical film including an isotropic multilayer optical film having first and second opposed major surfaces. The isotropic multilayer optical film reflects at least 50% of a light that is at least one of ultraviolet light or visible light, having an incident angle less than a cutoff angle from normal to the first major surface of the isotropic multilayer optical film, wherein the cutoff angle is in a range from 10° to 70°. The isotropic multilayer optical film allows at least 50% of the light having an incident angle of more than the cutoff angle from normal to the first major surface of the isotropic multilayer optical film to pass through the isotropic multilayer optical film. The isotropic multilayer optical film includes a marking on the second major surface of the isotropic multilayer optical film, the marking including at least one fluorescent compound. Various embodiments of multilayer optical films described herein are useful, for example, as anti-counterfeiting features, such as in identification documents or cards, currency, labels for pharmaceuticals or other high value products, or financial cards.

Patent Agency Ranking