Abstract:
An online store can transmit an online account token to an electronic device or to a biometric sensing device after a user successfully enters his or her account password. The electronic device or the biometric sensing device can countersign the online account token when the one or more biometric images match reference biometric images and the account password matches user identifier data stored in the electronic device or in the biometric sensing device. The countersigned online account token can then be transmitted to the online store. The user can then make one or more purchases after the online store receives the countersigned online account token.
Abstract:
A scannable object is sensed and scanned. A map is constructed based on the scan results. The map is compared to one or more stored templates. Results of the comparison are provided. In some implementations, a secured processor may construct the map and may provide reduced resolution (and/or other versions that contain less information) versions of the map and/or the stored templates to one or more other processors. The one or more other processors may determine a match-set based on matching between the reduced resolution map and stored templates. The secured processor may then identify whether or not a match exists between the map and any stored template based on the match-set.
Abstract:
A method includes receiving fingerprint image data at a fingerprint recognition sensor, where the fingerprint image data are associated with an authorized user. The fingerprint image data are transformed into a substantially rotationally invariant representation, which is maintained in a database of enrolled fingerprint information. Processed fingerprint image data from an accessing user are compared with the substantially rotationally invariant representation of the fingerprint image data from the authorized user.
Abstract:
A computing device may determine to execute a secured function. The computing may obtain a biometric of the user of the computing device utilizing one or more biometric sensors associated with the computing device, determine that the biometric matches the biometric of a user authorized to utilize the secured function, and execute the secured function. Whenever during execution of the secured function the computing device determines that the biometric sensor no longer detects the biometric of the user, the computing device may cease execution of the secured function.
Abstract:
A fingerprint sensing system. The fingerprint sensing system includes: at least one sensor; at least one display device; at least one application processor; and at least one secure enclave processor. The application processor(s) receives fingerprint data from the sensor(s) and provides the fingerprint data to the secure enclave processor(s). The secure enclave processor(s) decodes the fingerprint data and provides a signal indicative of at least one matched node. The application processor(s), responsive to receipt of the signal indicative of the matched node(s), presents at least a portion of a synthetic fingerprint image via at least one display device corresponding to the matched node(s).
Abstract:
A method includes receiving fingerprint image data at a fingerprint recognition sensor, where the fingerprint image data are associated with an authorized user. The fingerprint image data are transformed into a substantially rotationally invariant representation, which is maintained in a database of enrolled fingerprint information. Processed fingerprint image data from an accessing user are compared with the substantially rotationally invariant representation of the fingerprint image data from the authorized user.
Abstract:
A fingerprint sensing system. The fingerprint sensing system includes: at least one sensor; at least one display device; at least one application processor; and at least one secure enclave processor. The application processor(s) receives fingerprint data from the sensor(s) and provides the fingerprint data to the secure enclave processor(s). The secure enclave processor(s) decodes the fingerprint data and provides a signal indicative of at least one matched node. The application processor(s), responsive to receipt of the signal indicative of the matched node(s), presents at least a portion of a synthetic fingerprint image via at least one display device corresponding to the matched node(s).
Abstract:
A fingerprint sensing system. The fingerprint sensing system includes: at least one sensor; at least one display device; at least one application processor; and at least one secure enclave processor. The application processor(s) receives fingerprint data from the sensor(s) and provides the fingerprint data to the secure enclave processor(s). The secure enclave processor(s) decodes the fingerprint data and provides a signal indicative of at least one matched node. The application processor(s), responsive to receipt of the signal indicative of the matched node(s), presents at least a portion of a synthetic fingerprint image via at least one display device corresponding to the matched node(s).
Abstract:
Devices, methods and graphical user interfaces for manipulating user interfaces based on fingerprint sensor inputs are provided. While a display of an electronic device with a fingerprint sensor displays a first user interface, the device may detect movement of a fingerprint on the fingerprint sensor. In accordance with a determination that the movement of the fingerprint is in a first direction, the device allows navigating through the first user interface, and in accordance with a determination that the movement of the fingerprint is in a second direction different from the first direction, the device allows displaying a second user interface different from the first user interface on the display.
Abstract:
An autonomous navigation system may navigate through an environment in which one or more non-solid objects, including gaseous and/or liquid objects, are located. Non-solid objects may be determined, using sensor data, to present an obstacle or interference based on determined chemical composition, size, position, velocity, concentration, etc. of the objects.