Abstract:
Methods, systems, and computer program products for determining transit routes through crowd-sourcing, for determining an estimated time of arrival (ETA) of a vehicle of the transit route at a given location, and for providing predictive reminders to a user for catching a vehicle of the transit route. A server receives signal source information about wireless signal sources detected by user devices, including information about a first wireless signal source detected by some devices. The server determines that the first wireless signal source is moving. The server determines that the first wireless signal source is associated with a public transit route upon determining that the signal source information satisfies one or more selection criteria. The server stores information associating the first wireless signal source with the public transit route as transit movement data corresponding to the public transit route.
Abstract:
Techniques for modeling significant locations are described. A significant location can be a location that is significant to a user of a mobile device for a variety of reasons. The mobile device can determine that a place or region is a significant location upon determining that, with sufficient certainty, the mobile device has stayed at the place or region for a sufficient amount of time. The mobile device can construct a state model that is an abstraction of one or more significant locations. The state model can include states representing the significant locations, and transitions representing movement of the mobile device between the locations. The mobile device can use the state model to provide predictive user assistance.
Abstract:
An automated environment can monitor its resource consumption at the environment level and detect anomalies. Resource consumption can be monitored using a sparse set of sensors that provide information about the total resource consumption of the automated environment. The sensor data can be analyzed together with information about a behavioral routine of users in the automated environment to define a baseline resource consumption pattern. Once a baseline resource consumption pattern is established, anomalies in resource consumption can be detected and reported to users.
Abstract:
Methods, systems, and computer program products for determining transit routes through crowd-sourcing, for determining an estimated time of arrival (ETA) of a vehicle of the transit route at a given location, and for providing predictive reminders to a user for catching a vehicle of the transit route. A server receives signal source information about wireless signal sources detected by user devices, including information about a first wireless signal source detected by some devices. The server determines that the first wireless signal source is moving. The server determines that the first wireless signal source is associated with a public transit route upon determining that the signal source information satisfies one or more selection criteria. The server stores information associating the first wireless signal source with the public transit route as transit movement data corresponding to the public transit route.
Abstract:
Techniques for modeling significant locations are described. A significant location can be a location that is significant to a user of a mobile device for a variety of reasons. The mobile device can determine that a place or region is a significant location upon determining that, with sufficient certainty, the mobile device has stayed at the place or region for a sufficient amount of time. The mobile device can construct a state model that is an abstraction of one or more significant locations. The state model can include states representing the significant locations, and transitions representing movement of the mobile device between the locations. The mobile device can use the state model to provide predictive user assistance.
Abstract:
A journaling subsystem on a mobile device stores event data related to applications or other subsystems running on the mobile device. The event data can be stored and indexed in a journal database so that a timeline of past events can be reconstructed in response to search queries. In some implementations, a timeline can be reconstructed with markers on a map display based on search results. When the user interacts with a marker on the map display, the event data collected by the mobile device is made available to the user.
Abstract:
Systems and methods for activating a mobile device for use with a service provider are described. In one exemplary method, a mobile device having a currently inserted SIM card may be prepared for activation using a signing process in which an activation server generates a signed activation ticket that uniquely corresponds to the combination of the device and SIM card, and that is securely stored on the mobile device. In another exemplary method the mobile device may be activated in an activation process in which the device verifies an activation ticket against information specific to the device and SIM card, and initiates activation when the verification of the activation ticket is successful.
Abstract:
In some implementations, a method includes receiving, from a server, location data identifying locations of access points and mobile access points. A mobile device may determine an identifier of an access point within a communication range. The identifier is compared with the location data to identify parameters for the access point. The access point is determined to be a mobile access point based on the identified parameters included in the location data. In response to identifying the mobile access point, operating parameters executed by the mobile device are updated.
Abstract:
A journaling subsystem on a mobile device stores event data related to applications or other subsystems running on the mobile device. The event data can be stored and indexed in a journal database so that a timeline of past events can be reconstructed in response to search queries. In some implementations, a timeline can be reconstructed with markers on a map display based on search results. When the user interacts with a marker on the map display, the event data collected by the mobile device is made available to the user.
Abstract:
A number of devices co-located at a geographic location can broadcast and receive tokens. Tokens can be exchanged using a communication link having limited communication range. Tokens that are received by a device can be stored locally on the device and/or transmitted to a trusted service operating remotely on a network. In some implementations, the tokens can be stored with corresponding timestamps to assist a trusted service in matching or otherwise correlating the tokens with other tokens provided by other devices. The trusted service can perform an analysis on the tokens and timestamps to identify devices that were co-located at the geographic location at or around a contact time which can be defined by the timestamps. A group can be created based on results of the analysis. Users can be identified as members of the group and invited to join the group.