Abstract:
An endoprosthesis, a method for imaging an endoprosthesis, a method of making an endoprosthesis involve a polymeric substrate that has been modified to have voids embedded within the substrate. The voids are sized to scatter optical radiation from within the substrate so that an optical coherence tomography (OCT) image can be obtained in which an interior region of the substrate can be easily differentiated from empty space and other structures that surround the endoprosthesis. The voids allow for OCT visualization of the polymeric substrate which may be difficult to visualize by other methods such as fluoroscopy.
Abstract:
The present invention involves laser machining polymer substrates to form a stent with laser parameters that minimize damage to the substrate in a surface region adjacent to the machined edge surface. The wavelength and pulse width are selected for this unique application and they can be controlled to minimize the surface modifications (such as voids, cracks which are induced by the laser-material interaction) which contribute to the variation in mechanical properties with distance from the edge surface, bulk mechanical properties, or a combination thereof.
Abstract:
The present invention involves laser machining polymer substrates to form a stent with laser parameters that minimize damage to the substrate in a surface region adjacent to the machined edge surface. The wavelength and pulse width are selected for this unique application and they can be controlled to minimize the surface modifications (such as voids, cracks which are induced by the laser-material interaction) which contribute to the variation in mechanical properties with distance from the edge surface, bulk mechanical properties, or a combination thereof.
Abstract:
A method of accelerated aging of bioresorbable polymer scaffolds including exposing the scaffold to water is disclosed. The scaffold is exposed to water at a controlled temperature for a selected aging time. The functional outputs, such as radial strength, expandability, and % recoil obtained from aged scaffolds predict those of real-time aging of the scaffold. The accelerated aging factor, which is the required shelf life divided by the aging time, is significantly higher for poly(L-lactide) scaffolds tested than thermal aging.
Abstract:
A braided polymeric scaffold, made at least in part from a bioresorbable material is deployed on a catheter that uses a push-pull mechanism to deploy the scaffold. A drug coating is disposed on the scaffold. A plurality of scaffold segments on a catheter is also disclosed.
Abstract:
A method of laser machining a polymer construct to form a stent that includes a bioresorbable polymer and an absorber that increases absorption of laser energy during laser machining. The laser cuts the tubing at least in part by a multiphoton absorption mechanism and the polymer and absorber have a very low absorbance or are transparent to light at the laser wavelength.
Abstract:
An endoprosthesis, a method for imaging an endoprosthesis, a method of making an endoprosthesis involve a polymeric substrate that has been modified to have voids embedded within the substrate. The voids are sized to scatter optical radiation from within the substrate so that an optical coherence tomography (OCT) image can be obtained in which an interior region of the substrate can be easily differentiated from empty space and other structures that surround the endoprosthesis. The voids allow for OCT visualization of the polymeric substrate which may be difficult to visualize by other methods such as fluoroscopy.
Abstract:
A polymer scaffold is crimped to a balloon while the polymer material is in a thermodynamically unstable state, or a transient state including crimping shortly after a tube or scaffold processing step that imparts memory to the material, or shortly after rejuvenation of the scaffold.
Abstract:
A method of laser machining a polymer construct to form a stent that includes a bioresorbable polymer and an absorber that increases absorption of laser energy during laser machining. The laser cuts the tubing at least in part by a multiphoton absorption mechanism and the polymer and absorber have a very low absorbance or are transparent to light at the laser wavelength.