Abstract:
A high-power fiber laser amplifier with a laser wavelength of about 1060 to 1100 nm and an average laser power of more than about 500 W and an almost diffraction-limited beam quality (M2
Abstract:
A high-power fiber laser amplifier with a laser wavelength of about 1060 to 1100 nm and an average laser power of more than about 500 W and an almost diffraction-limited beam quality (M2
Abstract:
In order to improve a laser amplifying system comprising a plate-like solid-state body which has two oppositely located flat sides and comprises a laser-active medium, a cooling member with a support surface which is arranged so as to face one of the flat sides of the solid-state body and with which this flat side is thermally coupled for the discharge of heat, in such a manner that an optimum coupling takes place it is suggested that the flat side of the solid-state body be coupled mechanically and thermally to the support surface by an adhesive layer which is produced from an adhesive which passes from a liquid state into a solid, cross-linked state essentially invariant in volume and that the adhesive layer have an active adhesive layer area with a heat resistance of less than 10 K×mm2/W.
Abstract:
In order to improve a laser amplifying system comprising a plate-like solid-state body which has two oppositely located flat sides and comprises a laser-active medium, a cooling member with a support surface which is arranged so as to face one of the flat sides of the solid-state body and with which this flat side is thermally coupled for the discharge of heat, in such a manner that an optimum coupling takes place it is suggested that the flat side of the solid-state body be coupled mechanically and thermally to the support surface by an adhesive layer which is produced from an adhesive which passes from a liquid state into a solid, cross-linked state essentially invariant in volume and that the adhesive layer have an active adhesive layer area with a heat resistance of less than 10 K×mm2/W.
Abstract:
In order to improve a laser amplifying system comprising a plate-like solid-state body which has two oppositely located flat sides and comprises a laser-active medium, a cooling member with a support surface which is arranged so as to face one of the flat sides of the solid-state body and with which this flat side is thermally coupled for the discharge of heat, in such a manner that an optimum coupling takes place it is suggested that the flat side of the solid-state body be coupled mechanically and thermally to the support surface by an adhesive layer which is produced from an adhesive which passes from a liquid state into a solid, cross-linked state essentially invariant in volume and that the adhesive layer have an active adhesive layer area with a heat resistance of less than 10 K×mm2/W.
Abstract:
An optical beam switch includes at least one input optical wave guide, multiple output optical wave guides and an optical switching element for selectively switching a light beam guided in the at least one input optical wave guide to one of the output optical wave guides, in which the switching element is between the at least one input optical waveguide and the multiple output optical waveguides. The optical switching element includes a beam propagation element and an optical focusing system, where the beam propagation element has two mutually opposed end faces and where either the beam propagation element or the optical focusing system can be deflected and/or twisted transversely to an optical axis. The at least one input optical wave guide is attached to a first end face of the beam propagation element, and the output optical wave guides are attached to a second end face.
Abstract:
An optical beam switch includes at least one input optical wave guide, multiple output optical wave guides and an optical switching element for selectively switching a light beam guided in the at least one input optical wave guide to one of the output optical wave guides, in which the switching element is between the at least one input optical waveguide and the multiple output optical waveguides. The optical switching element includes a beam propagation element and an optical focusing system, where the beam propagation element has two mutually opposed end faces and where either the beam propagation element or the optical focusing system can be deflected and/or twisted transversely to an optical axis. The at least one input optical wave guide is attached to a first end face of the beam propagation element, and the output optical wave guides are attached to a second end face.
Abstract:
An F/theta lens system for focusing high-power laser radiation in a flat image field including at least two lenses. The at least two lenses are arranged sequentially in a beam path, where the at least two lenses are made from a material that is stable when exposed to laser radiation having a power of more than 1 kW, and at least one of the lenses has at least one aspherical lens surface.
Abstract:
A diode laser apparatus includes a plurality of laser bars, each laser bar having an emission direction and a beam path. The laser bars are disposed along an arc, the emission directions of the laser bars are directed toward an inside of the arc, and a slow-axis direction of each laser bar is oriented along the arc.
Abstract:
In a solid-state laser amplifier including at least two laser-active media in a common laser radiation field, the laser-active media do not form a hard aperture for the laser radiation field. Each of the laser-active media define a plane that is penetrated by the laser radiation field. The laser amplifier includes at least one focusing optical element disposed in the laser radiation field between two adjacent laser-active media. A focal length and a distance of the focusing optical element from the planes of the two adjacent laser-active media are selected such that the planes of the laser-active media are approximately mapped onto each other by a near-field far-field transformation.