Abstract:
An out-of-plane thermal buckle-beam microelectrical mechanical actuator is formed on a planar substrate of semiconductor material (e.g., silicon). The actuator includes first and second anchors secured to the substrate and multiple elongated thermal buckle beams that are secured between the anchors. The buckle beams are formed of semiconductor material, such as polysilicon. In one implementation, the buckling beams are coupled together by a pivot frame that includes a frame base secured to each buckle beam and at least one pivot arm that is coupled to the frame base at one end and includes a free end that pivots out-of-plane when the actuator is activated. A cyclic current source directs cyclic electrical current through the thermal buckle beams via the anchors to impart thermal expansion of the buckle beams and hence a cyclic buckling motion of them out of the plane (i.e., away from) the substrate. In one implementation, the actuator has a characteristic resonant deflection frequency range and the cyclic current is of a first frequency within the resonant deflection frequency range.
Abstract:
An electret accelerometer is provided in which a diaphragm, an electret, a back plate and an electronic circuit are placed in a casing and the casing is sealed to isolate the diaphragm from external acoustic signals.
Abstract:
In an example embodiment, a method is adapted to tracking input with a device. The method includes an act of monitoring and acts of activating and displaying if a touch input is detected. The device has a first side and a second side, with the second side opposite the first side. The device has a display screen disposed on the first side, and a screen-reflective interface disposed on the second side. Respective positions on the screen-reflective interface correspond to respective locations of the display screen. The screen-reflective interface of the device is monitored. If a touch input is detected on the screen-reflective interface, the device performs acts of activating and displaying. Specifically, a tracking state is activated for the screen-reflective interface responsive to the detected touch input on the screen-reflective interface. The interface icon is displayed on the display screen to indicate that the tracking state has been activated.
Abstract:
A system that facilitates managing resources (e.g., functionality, services) based at least in part upon an established context. More particularly, a context determination component can be employed to establish a context by processing sensor inputs or learning/inferring a user action/preference. Once the context is established via context determination component, a power/mode management component can be employed to activate and/or mask resources in accordance with the established context. The power and mode management of the device can extend life of a power source (e.g., battery) and mask functionality in accordance with a user and/or device state.
Abstract:
Virtual controllers for visual displays are described. In one implementation, a camera captures an image of hands against a background. The image is segmented into hand areas and background areas. Various hand and finger gestures isolate parts of the background into independent areas, which are then assigned control parameters for manipulating the visual display. Multiple control parameters can be associated with attributes of multiple independent areas formed by two hands, for advanced control including simultaneous functions of clicking, selecting, executing, horizontal movement, vertical movement, scrolling, dragging, rotational movement, zooming, maximizing, minimizing, executing file functions, and executing menu choices.
Abstract:
A system for generating surgical procedure training media draws upon the realistic data of an actual surgical procedure for realistic training without the risks. A 3D capturing component records three-dimensional model plus imaging data over time of a portion of a patient's body undergoing a surgical procedure. A spatial detection system detects an orientation of a surgical instrument relative to the patient's body during the surgical procedure. A modeling component creates a four-dimensional model (3D model+time) of the portion of the patient's body. Animation such as contingent events, trainee prompts, a virtual surgical instrument, etc., can be added to the model to expand upon the training potential. A user interface processes and edits training media for playback of the four-dimensional model including defining triggers responsive to a trainee simulated surgical inputs to pace sequencing of playback. An interactive player responds to pacing the playback of the editing training media or to a spatially detected simulated surgical instrument held by the student for direct tissue interaction.
Abstract:
A system that facilitates managing resources (e.g., functionality, services) based at least in part upon an established context. More particularly, a context determination component can be employed to establish a context by processing sensor inputs or learning/inferring a user action/preference. Once the context is established via context determination component, a power/mode management component can be employed to activate and/or mask resources in accordance with the established context. The power and mode management of the device can extend life of a power source (e.g., battery) and mask functionality in accordance with a user and/or device state.
Abstract:
An electrostatic bimorph actuator includes a cantilevered flexible bimorph arm that is secured and insulated at one end to a planar substrate. In an electrostatically activated state the bimorph arm is generally parallel to the planar substrate. In a relaxed state, residual stress in the bimorph arm causes its free end to extend out-of-plane from the planar substrate. The actuator includes a substrate electrode that is secured to and insulated from the substrate and positioned under and in alignment with the bimorph arm. An electrical potential difference applied between the bimorph arm and the substrate electrode imparts electrostatic attraction between the bimorph arm and the substrate electrode to activate the actuator. As an exemplary application in which such actuators could be used, a microelectrical mechanical optical display system is described.
Abstract:
An improved method and system for reducing the power consumption of computing devices capable of communicating over a wireless network allows longer device operation and/or the use of smaller batteries. The wireless computing device supports a low power channel for receiving control signals during idle periods of operation. When the computing device is idle, the device is configured to power down all of its components with the exception of the circuitry required to power the low power channel. As such, the channel is maintained in an active state for receiving signals during both idle and non-idle periods, or in an embodiment, only during idle periods. When another device wishes to communicate with the wireless computing device, the low power channel passes a “wake-up” signal to the device indicating that the device be powered up from the idle mode of operation. A host RF component that is coupled to the network via a host computer generates this wake-up signal in an embodiment of the invention.
Abstract:
A microelectrical mechanical system (MEMS) actuator having electrically conductive coils that create first magnetic fields that are opposed by a second magnetic field is disclosed. The actuator includes two coils having dual, interspersed Archimedean spirals. Within an actuator, one coil is arranged with spirals that proceed clockwise, while the other coil is provided with spirals that proceed counterclockwise. An electrically conductive bridge mechanically couples the two coils of each actuator to a mirror. Opposing magnetic fields are created to provide a force that urges the coils to expand so that the outermost portions of the coil extend upward, away from the substrate, and lift the bridge and mirror. Control current may then be modulated to increase and decrease the coil's magnetic field strength thereby increasing and decreasing the coil's extension to raise and lower relative to the substrate.