Abstract:
Systems and processes are disclosed for handling a multi-part voice command for a virtual assistant. Speech input can be received from a user that includes multiple actionable commands within a single utterance. A text string can be generated from the speech input using a speech transcription process. The text string can be parsed into multiple candidate substrings based on domain keywords, imperative verbs, predetermined substring lengths, or the like. For each candidate substring, a probability can be determined indicating whether the candidate substring corresponds to an actionable command. Such probabilities can be determined based on semantic coherence, similarity to user request templates, querying services to determine manageability, or the like. If the probabilities exceed a threshold, the user intent of each substring can be determined, processes associated with the user intents can be executed, and an acknowledgment can be provided to the user.
Abstract:
A method of operating a digital assistant to provide emergency call functionality is provided. In some embodiments, the method is performed at a device including one or more processors and memory storing instructions for execution by the one or more processors. The method includes receiving a speech input from a user, determining whether the speech input expresses a user request for making an emergency call, and determining a local emergency dispatcher telephone number based on a geographic location of the device. The method also includes, in response to determining or obtaining a determination that the speech input expresses a user request for making an emergency call, calling the local emergency dispatcher telephone number using the emergency call functionality.
Abstract:
Systems and processes for operating a digital assistant are provided. In one example, a method includes receiving a first speech input from a user. The method further includes identifying context information and determining a user intent based on the first speech input and the context information. The method further includes determining whether the user intent is to perform a task using a searching process or an object managing process. The searching process is configured to search data, and the object managing process is configured to manage objects. The method further includes, in accordance with a determination the user intent is to perform the task using the searching process, performing the task using the searching process; and in accordance with the determination that the user intent is to perform the task using the object managing process, performing the task using the object managing process.
Abstract:
Systems and processes for operating an intelligent automated assistant are provided. In some embodiments, contextual data is obtained and used to select a set of keywords (e.g., words or phrases) for voice control of an electronic device. When a speech input is received by the electronic device, a determination is made whether the speech input includes any of the selected keywords. If the speech input does include a selected keyword, an action is performed in response.
Abstract:
Systems and processes for operating a digital assistant are provided. In one example, a method includes receiving a first speech input from a user. The method further includes identifying context information and determining a user intent based on the first speech input and the context information. The method further includes determining whether the user intent is to perform a task using a searching process or an object managing process. The searching process is configured to search data, and the object managing process is configured to manage objects. The method further includes, in accordance with a determination the user intent is to perform the task using the searching process, performing the task using the searching process; and in accordance with the determination that the user intent is to perform the task using the object managing process, performing the task using the object managing process.
Abstract:
An electronic device with one or more processors and memory includes a procedure for enabling conversation persistence across two or more instances of a digital assistant. In some embodiments, the device displays a first dialogue in a first instance of a digital assistant user interface. In response to a request to display a user interface different from the digital assistant user interface, the device displays the user interface different from the digital assistant user interface. In response to a request to invoke the digital assistant, the device displays a second instance of the digital assistant user interface, including displaying a second dialogue in the second instance of the digital assistant user interface, where the first dialogue remains available for display in the second instance of the digital assistant user interface.
Abstract:
Systems and processes for operating a digital assistant are provided. In one example, a method includes receiving a first speech input from a user. The method further includes identifying context information and determining a user intent based on the first speech input and the context information. The method further includes determining whether the user intent is to perform a task using a searching process or an object managing process. The searching process is configured to search data, and the object managing process is configured to manage objects. The method further includes, in accordance with a determination the user intent is to perform the task using the searching process, performing the task using the searching process; and in accordance with the determination that the user intent is to perform the task using the object managing process, performing the task using the object managing process.
Abstract:
Systems and processes are disclosed for handling a multi-part voice command for a virtual assistant. Speech input can be received from a user that includes multiple actionable commands within a single utterance. A text string can be generated from the speech input using a speech transcription process. The text string can be parsed into multiple candidate substrings based on domain keywords, imperative verbs, predetermined substring lengths, or the like. For each candidate substring, a probability can be determined indicating whether the candidate substring corresponds to an actionable command. Such probabilities can be determined based on semantic coherence, similarity to user request templates, querying services to determine manageability, or the like. If the probabilities exceed a threshold, the user intent of each substring can be determined, processes associated with the user intents can be executed, and an acknowledgment can be provided to the user.
Abstract:
Speech recognition is performed on a received utterance to determine a plurality of candidate text representations of the utterance, including a primary text representation and one or more alternative text representations. Natural language processing is performed on the primary text representation to determine a plurality of candidate actionable intents, including a primary actionable intent and one or more alternative actionable intents. A result is determined based on the primary actionable intent. The result is provided to the user. A recognition correction trigger is detected. In response to detecting the recognition correction trigger, a set of alternative intent affordances and a set of alternative text affordances are concurrently displayed.
Abstract:
An electronic device with one or more processors and memory includes a procedure for enabling conversation persistence across two or more instances of a digital assistant. In some embodiments, the device displays a first dialogue in a first instance of a digital assistant user interface. In response to a request to display a user interface different from the digital assistant user interface, the device displays the user interface different from the digital assistant user interface. In response to a request to invoke the digital assistant, the device displays a second instance of the digital assistant user interface, including displaying a second dialogue in the second instance of the digital assistant user interface, where the first dialogue remains available for display in the second instance of the digital assistant user interface.