Abstract:
A chemical mechanical polishing apparatus includes a platen supporting a polishing pad, a carrier head to hold a surface of a substrate against the polishing pad, an acoustic sensor supported on the platen, and a motor to generate relative motion between the platen and the carrier head so as to polish the substrate. The carrier head includes a retaining ring for holding the substrate, and the acoustic sensor travels in a path below the carrier head and the retaining ring. A controller is configured to analyze a signal from the acoustic sensor and determine a characteristic of the retaining ring based on the signal.
Abstract:
A body is brought into contact with a polishing pad of a polishing system, a polishing liquid is supplied to the polishing pad, relative motion between the body and the polishing pad is generated while the body contacts the polishing pad, a signal from an in-situ eddy current monitoring system during the relative motion while the body contacts the polishing pad, generating, and mechanical vibrations in the polishing system are detected based on a signal from the in-situ eddy current monitoring system.
Abstract:
A substrate cleaning system includes a cleaner module to clean a substrate after polishing of the substrate, a drier module to dry the substrate after cleaning by the cleaner module, a substrate support movable along a first axis from a first position in the drier module to a second position outside the drier module, and an in-line metrology station including a line-scan camera positioned to scan the substrate as the substrate is held by the substrate support and the substrate support is between the first position to the second position. The first axis is substantially parallel to a face of the substrate as held in by the substrate support.
Abstract:
During chemical mechanical polishing of a substrate, a signal value that depends on a thickness of a layer in a measurement spot on a substrate undergoing polishing is determined by a first in-situ monitoring system. An image of at least the measurement spot of the substrate is generated by a second in-situ imaging system. Machine vision processing, e.g., a convolutional neural network, is used to determine a characterizing value for the measurement spot based on the image. Then a measurement value is calculated based on both the characterizing value and the signal value.
Abstract:
A substrate cleaning system includes a cleaner module to clean a substrate after polishing of the substrate, a drier module to dry the substrate after cleaning by the cleaner module, a substrate support movable along a first axis from a first position in the drier module to a second position outside the drier module, and an in-line metrology station including a line-scan camera positioned to scan the substrate as the substrate is held by the substrate support and the substrate support is between the first position to the second position. The first axis is substantially parallel to a face of the substrate as held in by the substrate support.
Abstract:
A neural network is trained for use in a substrate thickness measurement system by obtaining ground truth thickness measurements of a top layer of a calibration substrate at a plurality of locations, each location at a defined position for a die being fabricated on the substrate. A plurality of color images of the calibration substrate are obtained, each color image corresponding to a region for a die being fabricated on the substrate. A neural network is trained to convert color images of die regions from an in-line substrate imager to thickness measurements for the top layer in the die region. The training is performed using training data that includes the plurality of color images and ground truth thickness measurements with each respective color image paired with a ground truth thickness measurement for the die region associated with the respective color image.
Abstract:
A method of controlling polishing includes storing a base measurement, the base measurement being an eddy current measurement of a substrate after deposition of at least one layer overlying a semiconductor wafer and before deposition of a conductive layer over the at least one layer, after deposition of the conductive layer over the at least one layer and during polishing of the conductive layer on substrate, receiving a sequence of raw measurements of the substrate from an in-situ eddy current monitoring system, normalizing each raw measurement in the sequence of raw measurement to generate a sequence of normalized measurements using the raw measurement and the base measurement, and determining at least one of a polishing endpoint or an adjustment for a polishing rate based on at least the sequence of normalized measurements.
Abstract:
A method of operating a polishing system includes polishing a substrate at a polishing station, the substrate held by a carrier head during polishing, transporting the substrate to an in-sequence optical metrology system positioned between the polishing station and another polishing station or a transfer station, measuring a plurality of spectra reflected from the substrate with a probe of the optical metrology system while moving the carrier head to cause the probe to traverse a path across the substrate and while the probe remains stationary, the path across the substrate comprising either a plurality of concentric circles or a plurality of substantially radially aligned arcuate segments, and adjusting a polishing endpoint or a polishing parameter of the polishing system based on one or more characterizing values generated based on at least some of the plurality of spectra.
Abstract:
A method of controlling a polishing operation is described. A controller stores an optical model for a layer stack having a plurality of layers and a plurality of input parameters including a first parameter and a second parameter. The controller stores data defining a plurality of default values for the first parameter and measures an optical property of a substrate and generates a second value. Using the optical model and the second value and iterating over the first values, a number of reference spectra are calculated. A spectrum is measured and the measured spectrum is matched to the reference spectra and the best matched reference spectrum is determined. The first value of the best matched reference spectrum is determined and is used to adjust a polishing endpoint or a polishing parameter of a polishing apparatus.
Abstract:
A method of operating a polishing system includes polishing a substrate at a polishing station, the substrate held by a carrier head during polishing, transporting the substrate to an in-sequence optical metrology system positioned between the polishing station and another polishing station or a transfer station, measuring a plurality of spectra reflected from the substrate with a probe of the optical metrology system while moving the carrier head to cause the probe to traverse a path across the substrate and while the probe remains stationary, the path across the substrate comprising either a plurality of concentric circles or a plurality of substantially radially aligned arcuate segments, and adjusting a polishing endpoint or a polishing parameter of the polishing system based on one or more characterizing values generated based on at least some of the plurality of spectra.