Abstract:
A detector (110) for determining a position of at least one object (112) with regard to at least one optical sensor (120) is proposed, wherein the optical sensor (120) has an image plane (122). The detector (110) comprises: at least one illumination source (134), wherein the illumination source (134) emits at least one light beam (136), wherein the light beam (136) comprises a component which is parallel to the image plane (122) of the optical sensor (120); the optical sensor (120), wherein the optical sensor (120) has a sensor region (126) in the image plane (122), wherein the optical sensor (120) is adapted to determine a transversal component of the position of the object (112) in an event where the object (112) approaches the optical sensor (120) in a manner that light is scattered from the component of the light beam (136) conducted parallel to the image plane (122) of the optical sensor (120), the transversal component of the position being a position in the image plane (122) of the optical sensor (120), the optical sensor (120) being adapted to generate at least one transversal sensor signal from the light scattered from the component of the light beam (136) conducted parallel to the image plane (122) of the optical sensor (120) in the sensor region (126), wherein the optical sensor (120) is further designed to generate at least one longitudinal sensor signal in a manner dependent on an illumination of the sensor region (126) by light which is scattered from the component of the light beam (136) conducted parallel to the image plane (122) of the optical sensor (120), wherein the longitudinal sensor signal is dependent on a variation of an intensity of the light is scattered from the component of the light beam (136) conducted parallel to the image plane (122) of the optical sensor (120) in the sensor region (126); and an evaluation device (132), wherein the evaluation device (132) is designed to generate at least one item of information on a transversal component of a position of the object (112) by evaluating the transversal sensor signal and wherein the evaluation device (132) is further designed to generate at least one item of information on a longitudinal component of a position of the object (112) by evaluating the longitudinal sensor signal.
Abstract:
A detector for determining a position of at least one object. The detector includes: at least one optical sensor configured to detect a light beam traveling from the object towards the detector, the optical sensor including at least one matrix of pixels; and at least one evaluation device configured to determine an intensity distribution of pixels of the optical sensor that are illuminated by the light beam, the evaluation device further configured to determine at least one longitudinal coordinate of the object by using the intensity distribution.
Abstract:
An optical detector (110) is disclosed. The optical detector (110) comprises: —an optical sensor (112), having a substrate (116) and at least one photosensitive layer setup (118) disposed thereon, the photosensitive layer setup (118) having at least one first electrode (120), at least one second electrode (130) and at least one photovoltaic material (140) sandwiched in between the first electrode (120) and the second electrode (130), wherein the photovoltaic material (140) comprises at least one organic material, wherein the first electrode (120) comprises a plurality of first electrode stripes (124) and wherein the second electrode (130) comprises a plurality of second electrode stripes (134), wherein the first electrode stripes (124) and the second electrode stripes (134) intersect such that a matrix (142) of pixels (144) is formed at intersections of the first electrode stripes (124) and the second electrode stripes (134); and —at least one readout device (114), the readout device (114) comprising a plurality of electrical measurement devices (154) being connected to the second electrode stripes (134) and a switching device (160) for subsequently connecting the first electrode stripes (124) to the electrical measurement devices (154).
Abstract:
The present invention relates to thermally stable p-conducting oligomers and polymers of triangulene of formula (I) and their use in dye sensitized solar cells.
Abstract:
A detector (110) for optically detecting at least one object (112) is proposed. The detector (110) comprises at least one optical sensor (114). The optical sensor (114) has at least one sensor region (116). The optical sensor (114) is designed to generate at least one sensor signal in a manner dependent on an illumination of the sensor region (116). The sensor signal, given the same total power of the illumination, is dependent on a geometry of the illumination, in particular on a beam cross section of the illumination on the sensor area (118). The detector (110) furthermore has at least one evaluation device (122). The evaluation device (122) is designed to generate at least one item of geometrical information from the sensor signal, in particular at least one item of geometrical information about the illumination and/or the object (112).
Abstract:
A detector (110) for determining a position of at least one object (112) is proposed. The detector (110) comprises: at least one transversal optical sensor (130), the transversal optical sensor (130) being adapted to determine a transversal position of at least one light beam (138) traveling from the object (112) to the detector (110), the transversal position being a position in at least one dimension perpendicular to an optical axis (116) of the detector (110), the transversal optical sensor (130) being adapted to generate at least one transversal sensor signal; at least one longitudinal optical sensor (132), wherein the longitudinal optical sensor (132) has at least one sensor region (136), wherein the longitudinal optical sensor (132) is designed to generate at least one longitudinal sensor signal in a manner dependent on an illumination of the sensor region (136) by the light beam (138), wherein the longitudinal sensor signal, given the same total power of the illumination, is dependent on a beam cross-section of the light beam (138) in the sensor region (136); at least one evaluation device (142), wherein the evaluation device (142) is designed to generate at least one item of information on a transversal position of the object (112) by evaluating the transversal sensor signal and to generate at least one item of information on a longitudinal position of the object (112) by evaluating the longitudinal sensor signal.
Abstract:
The present invention relates 9,9′-spirobifluorene compounds of general formula I wherein the variables R11, R12, R21, R22, R31, R32, R41 and R42 independently of each other have the meaning of aryl or hetaryl, with the proviso that not all of the radicals R11, R12, R21, R22, R31, R32, R41 and R42 are identical, to the use of compounds of general formula I in organic electronics applications, especially in organic field effect transistors, in organic photodetectors and organic solar cells, specifically in dye-sensitized solar cells and bulk heterojunction solar cells, and to an organic field effect transistor, a dye-sensitized solar cell and a bulk heterojunction solar cell comprising compounds of general formula I.
Abstract:
An optical detector (110) is disclosed, comprising: at least one optical sensor (122) adapted to detect a light beam (116) and to generate at least one sensor signal, wherein the optical sensor (122) has at least one sensor region (126), wherein the sensor signal of the optical sensor (122) is dependent on an illumination of the sensor region (126) by the light beam (116), wherein the sensor signal, given the same total power of the illumination, is dependent on a width of the light beam (116) in the sensor region (126); at least one focus-tunable lens (130) located in at least one beam path (132) of the light beam (116), the focus-tunable lens (130) being adapted to modify a focal position of the light beam (116) in a controlled fashion; at least one focus-modulation device (136) adapted to provide at least one focus-modulating signal (138) to the focus-tunable lens (130), thereby modulating the focal position; and at least one evaluation device (140), the evaluation device (140) being adapted to evaluate the sensor signal.
Abstract:
An optical detector (110) is disclosed. The optical detector (110) comprises: an optical sensor (112), having a substrate (116) and at least one photosensitive layer setup (118) disposed thereon, the photosensitive layer setup (118) having at least one first electrode (120), at least one second electrode (130) and at least one photovoltaic material (140) sandwiched in between the first electrode (120) and the second electrode (130), wherein the photovoltaic material (140) comprises at least one organic material, wherein the first electrode (120) comprises a plurality of first electrode stripes (124) and wherein the second electrode (130) comprises a plurality of second electrode stripes (134), wherein the first electrode stripes (124) and the second electrode stripes (134) intersect such that a matrix (142) of pixels (144) is formed at intersections of the first electrode stripes (124) and the second electrode stripes (134); and at least one readout device (114), the readout device (114) comprising a plurality of electrical measurement devices (154) being connected to the second electrode stripes (134) and a switching device (160) for subsequently connecting the first electrode stripes (124) to the electrical measurement devices (154).
Abstract:
A detector (118) for determining a position of at least one object (112) is disclosed, the detector (118) comprising: at least one longitudinal optical sensor (120), wherein the longitudinal optical sensor (120) has at least one sensor region (124), wherein the longitudinal optical sensor (120) is at least partially transparent, wherein the longitudinal optical sensor (120) is designed to generate at least one longitudinal sensor signal in a manner dependent on an illumination of the sensor region (124) by at least one light beam (126) traveling from the object (112) to the detector (118), wherein the longitudinal sensor signal, given the same total power of the illumination, is dependent on a beam cross-section of the light beam (126) in the sensor region (124); at least one illumination source (114) adapted to illuminate the object (112) with illumination light (115) through the longitudinal optical sensor (120); and at least one evaluation device (136), wherein the evaluation device (136) is designed to generate at least one item of information on a longitudinal position of the object (112) by evaluating the longitudinal sensor signal.