Abstract:
An array substrate and a display device are provided. The array substrate comprises a plurality of signal lines (40), a plurality of connecting lines (50) and a driving module (60) in a peripheral region (1) outside a display region (2); the connecting lines (50) are configured for connecting the signal lines (40) and the driving module (60), to transmit signal from the signal lines (40) to the driving module (60), wherein, at least one of the connecting lines (50) and at least one of the signal lines (40) are designed to intersect with and insulated from each other in a first region (N). The at least one of the signal lines (40) includes, in a second region (O) other than the first region (N), a first electrode line layer (401) and a second electrode line layer (402), while, in the first region (N), includes the first electrode line layer (401) but does not include the second electrode line layer (402). The array substrate may prevent problems of electrostatic accumulation or short circuit from occurring between the connecting lines (50) and the second electrode line layer (402).
Abstract:
The present disclosure provides an X-ray flat panel detector including: a base substrate; thin film transistors (TFTs), a pixel electrode layer, photodiodes, a transparent electrode layer, and an X-ray conversion layer which are arranged on the base substrate; and an electric field application portion configured to generate an electric field, wherein the photodiodes are arranged in the electric field, and a moving direction of negative charges when visible light rays are converted to electrical signals by the photodiodes is substantially same as a direction of the electric field. In this detector, it is applied a direction of the electric field which is substantially same as the moving direction of negative charges in the photodiode, so that movement of holes and electrons of the photodiode may be accelerated under an influence of the electric field, and thus the electrical signal may promptly arrive at the pixel electrode. As a result, it is improved the quantum detection efficiency and the sensitivity of the X-ray flat panel detector.
Abstract:
An array substrate, a manufacturing method thereof, and a display device are provided. The array substrate includes a base substrate and a thin film transistor on the base substrate; a light shielding layer is disposed between the thin film transistor and the base substrate, and the light shielding layer includes a light shielding metal layer and, a light reflection adjusting layer which are stacked on the base substrate, the light reflection adjusting layer covers the light shielding metal layer, and a reflectance of the light reflection adjusting layer is lower than a reflectance of the light shielding metal layer.
Abstract:
A sputtering apparatus and a target changing device thereof are disclosed. The target changing device includes a stand, a mounting shaft on the stand, a target mounting body sleeved on an outside of the mounting shaft and being ratable around an axis of the mounting shaft, and a first driving mechanism configured to drive the target mounting body to rotate around the axis of the mounting shaft. The target mounting body includes at least two target mounting surfaces configured to mount targets. When the target mounting body rotates around the axis of the mounting shaft, each of the target mounting surfaces may be switched between an operating state orientation and an idle orientation
Abstract:
The embodiments of the present disclosure provide an imprint template, a detection method and a detection device. The imprint template includes a first region and a second region located in the periphery of the first region. The first region is provided with a first imprint structure configured to imprint a first film layer pattern into a base material in a product region of a target substrate. The second region is provided with a second imprint structure configured to imprint a second film layer pattern into the base material in the periphery of the product region of the target substrate. And the second film layer pattern is used for assessing imprint quality of the first film layer pattern.
Abstract:
A light-emitting diode, a method for fabricating the same, and a display device are disclosed. The light-emitting diode includes a first and second electrode; a first carrier transporting layer, a light emitting layer, and a second carrier transporting layer which are arranged between the first and second electrode in this order The light-emitting diode further includes a second carrier transporting layer which is arranged between the light emitting layer and the second electrode. The second carrier blocking layer blocks a portion of the second carrier from being transported to the light emitting layer. This decreases the injecting efficiency of the second carrier, improves an injecting balance between the second carrier and the first carrier with a low injecting efficiency, avoids energy consumption in the form of heat, and increases the light output efficiency and lifetime of the light-emitting diode.
Abstract:
A manufacturing method of an array substrate is provided. The method includes sequentially depositing a first electrode layer and a gate metal layer on a base substrate, the first electrode layer including at least two conductive layers, formation materials of the at least two conductive layers having different etching rates. The method also includes forming a photoresist layer on the gate metal layer, exposing and developing the photoresist layer using a halftone mask plate, performing a first etching process on the gate metal layer, etching the first electrode layer, and ashing the photoresist layer, performing a second etching process on the gate metal layer by using remaining photoresist layer as a mask, stripping the remaining photoresist layer, and sequentially forming a semiconductor layer, a source and drain electrode layer, a via-hole and a second electrode layer on the gate metal layer on which the second etching process has been performed.
Abstract:
The present disclosure provides a pixel isolation wall and its manufacturing method. The pixel isolation wall includes an oleophilic layer arranged on a substrate on which a TFT array and a pixel electrode array is formed, and an oleophobic layer arranged on the oleophilic layer and configured to define, together with the oleophilic layer, a plurality of recess regions corresponding to the pixel electrode array.
Abstract:
An array substrate and a display device are disclosed. The array substrate includes a peripheral area in which a plurality of gate electrode material lines, a plurality of source-drain electrode material lines and a plurality of first metal lines are disposed. Overlapping areas are provided between or among the gate electrode material lines, the source-drain material lines and the first metal lines; a number of the overlapping areas of the source-drain material lines and the first metal lines is less than a number of the overlapping areas of the source-drain material lines and the gate electrode material lines; the gate electrode material lines, the source-drain material lines and the first metal lines are configured as connecting lines of circuits in the peripheral area.
Abstract:
This invention provides an organic electroluminescent device, a method of preparing the same, a display substrate comprising the same, and a display apparatus. According to the invention, the agglomeration and self quenching of quantum dots can be effectively prevented as the quantum dots are uniformly dispersed in electroluminescent polymer fibers. Due to the fluorescence resonance energy transfer effect between the electroluminescent polymer and the quantum dots, a higher quantum yield is achieved, and the luminescence efficiency of the quantum dots can be improved accordingly. Furthermore, since the light emission from the quantum dots is achieved by the fluorescence resonance energy transfer effect, which is an energy transfer process without damage to the quantum dots, the damage to quantum dots is less and thus the lifetime thereof can be beneficially increased, as compared to the direct charge injection mode of the prior art.