Abstract:
An apparatus for determining a property, the apparatus including: an optical fiber having a series of fiber Bragg gratings, each fiber Bragg grating in the series being characterized by a light reflection frequency at which the fiber Bragg grating reflects light; wherein: the light reflection frequency for each fiber Bragg grating is different from the light reflection frequency of each adjacent fiber Bragg grating to minimize resonance of light between at least two of the fiber Bragg gratings in the series; at least two fiber Bragg gratings in the series have light reflection frequencies that overlap; and a change in the light reflection frequency of each fiber Bragg grating in the series is related to the property at the location of the each fiber Bragg grating.
Abstract:
A hydrogen-resistant optical fiber particularly well-suitable for downhole applications comprises a relatively thick pure silica core and a depressed-index cladding layer. Interposed between the depressed-index cladding layer and the core is a relatively thin germanium-doped interface. By maintaining a proper relationship between the pure silica core diameter and the thickness of the germanium-doped interface, a majority (preferably, more than 65%) of the propagating signal can be confined within the pure silica core and, therefore, be protected from hydrogen-induced attenuation problems associated with the presence of germanium (as is common in downhole fiber applications). The hydrogen-resistant fiber of the present invention can be formed to include one or more Bragg gratings within the germanium-doped interface, useful for sensing applications.
Abstract:
A method for imaging a structure disposed in a borehole penetrating the earth, the method including: selecting a splice housing having a first port configured to seal the housing to a first fiber optic cable and a second port configured to seal the housing to a fiber optic sensor configured to image the structure, wherein the housing includes a sealed interior volume sufficient to contain a splice of optical fibers for protection and to enable a functional bend of at least ninety degrees for at least one spliced optical fiber; disposing a splice between an optical fiber of the first fiber optic cable and an optical fiber of the fiber optic sensor in the splice housing; disposing the splice housing containing the splice in the borehole; attaching the fiber optic sensor to the structure; and disposing the structure in the borehole after the splice housing is disposed in the borehole.
Abstract:
A multi-core optical fiber sensor is described, which sensor includes an optical fiber having at least two cores, wherein the cores have collocated measurement portions, for example in-fiber interferometers or Bragg grating portions. In an exemplary embodiment, the fiber is provided with collocated measurement portions during fiberization to eliminate drift factors and to provide temperature corrected parameter measurement capabilities.
Abstract:
An optical fiber resistant to hydrogen-induced attenuation losses at both relatively low and relatively high temperatures includes a substantially pure silica core and a hydrogen retarding layer. The hydrogen retarding coating may be made of carbon, metal, or silicon nitride. The fiber may also include a cladding layer, a second silica layer, and a protective outer sheath.
Abstract:
An optical sensor that includes multiple filter cavities for the simultaneous, co-located measurement of pressure and a temperature in a single structure. The sensor may include a single launch fiber bonded to a tube a pre-determined distance from a reflective fiber. The end of the reflective fiber not encased within the tube is enclosed within a cap formed of a material that has a refractive index that changes with changing temperature. Alternatively, a material having a refractive index that changes with changing temperature can be inserted into the tube to take the place of the reflective fiber. Multiple launch fibers may be incorporated within a tube.
Abstract:
A downhole property measurement apparatus includes an optical fiber having a series fiber Bragg gratings with interleaved resonant wavelengths such that adjacent fiber Bragg gratings have different resonant wavelengths and a difference between adjacent resonant wavelengths is greater than a dynamic wavelength range of each of the adjacent fiber Bragg gratings. An optical interrogator is in optical communication with the optical fiber and configured to emit a frequency domain light signal having a swept wavelength for a first time duration and a chirp having a modulation of amplitude with a varying of wavelength for a second time duration that is less than the first time duration. A return light signal is transformed by the optical interrogator into a time domain to determine a resonant wavelength shift and corresponding location of each of the gratings. A processor converts the resonant wavelength shifts into the downhole property.
Abstract:
A method for imaging a structure disposed in a borehole penetrating the earth, the method including: selecting a splice housing having a first port configured to seal the housing to a first fiber optic cable and a second port configured to seal the housing to a fiber optic sensor configured to image the structure, wherein the housing includes a sealed interior volume sufficient to contain a splice of optical fibers for protection and to enable a functional bend of at least ninety degrees for at least one spliced optical fiber; disposing a splice between an optical fiber of the first fiber optic cable and an optical fiber of the fiber optic sensor in the splice housing; disposing the splice housing containing the splice in the borehole; attaching the fiber optic sensor to the structure; and disposing the structure in the borehole after the splice housing is disposed in the borehole.
Abstract:
An optical fiber includes: a core including a photosensitive material disposed therein, the core having a first index of refraction; a depressed cladding surrounding the core and having a second index of refraction that is lower than the first index of refraction; and an outer cladding surrounding the depressed cladding and having a third index of refraction that is higher than the depressed cladding.
Abstract:
A multiple-layer fiber-optic sensor is described with dual Bragg gratings in layers of different materials, so that the known temperature and strain response properties of each material may be utilized to simultaneously correct the sensor output for temperature and strain effects.