Abstract:
A bottleneck detector may use an iterative method to identify a bottleneck with specificity. An automated checkpoint inserter may place checkpoints in an application. When a bottleneck is detected in an area of an application, the first set of checkpoints may be removed and a new set of checkpoints may be placed in the area of the bottleneck. The process may iterate until a bottleneck may be identified with enough specificity to aid a developer or administrator of an application. In some cases, the process may identify a specific function or line of code where a bottleneck occurs.
Abstract:
A configurable memory allocation and management system may generate a configuration file with memory settings that may be deployed at runtime. An execution environment may capture a memory allocation boundary, look up the boundary in a configuration file, and apply the settings when the settings are available. When the settings are not available, a default set of settings may be used. The execution environment may deploy the optimized settings without modifying the executing code.
Abstract:
Memoization may be deployed using a configuration file or database that identifies functions to memorize, and in some cases, includes input and result values for those functions. The configuration file or database may be created by profiling target code and offline or otherwise separate analysis of the profiling results. The configuration file may be used by an execution environment to identify which functions to memorize during execution. The offline or separate analysis of the profiling results may enable more sophisticated analysis than could otherwise be performed in parallel with executing the target code, including historical analysis of multiple instances of the target code and sophisticated cost/benefit analysis.
Abstract:
A computer software execution system may have a configurable memory allocation and management system. A configuration file or other definition may be created by analyzing a running application and determining an optimized set of settings for the application on the fly. The settings may include memory allocated to individual processes, memory allocation and deallocation schemes, garbage collection policies, and other settings. The optimization analysis may be performed offline from the execution system. The execution environment may capture processes during creation, then allocate memory and configure memory management settings for each individual process.
Abstract:
Memoizable functions may be identified by analyzing a function's side effects. The side effects may be evaluated using a white list, black list, or other definition. The side effects may also be classified into conditions which may or may not permit memoization. Side effects that may have de minimus or trivial effects may be ignored in some cases where the accuracy of a function may not be significantly affected when the function may be memoized.
Abstract:
An operating system may be configured using a control flow graph that defines relationships between each executable module. The operating system may be configured by analyzing an application and identifying the operating system modules called from the application, then building a control flow graph for the configuration. The operating system may be deployed to a server or other computer containing only those components identified in the control flow graph. Such a lightweight deployment may be used on a large scale for datacenter servers as well as for small scale deployments on sensors and other devices with little processing power.
Abstract:
A tracing and debugging system may collect both performance related tracer data and snapshot data. The tracer data may contain aggregated performance and operational data, while the snapshot data may contain call stack, source code, and other information that may be useful for debugging and detailed understanding of an application. The snapshot data may be stored in a separate database from the tracer data, as the snapshot data may contain data that may be private or sensitive, while the tracer data may be aggregated information that may be less sensitive. A debugging user interface may be used to access, display, and browse the stored snapshot data.
Abstract:
Processes in a message passing system may be launched when messages having data patterns match a function on a receiving process. The function may be identified by an execution pointer within the process. When the match occurs, the process may be added to a runnable queue, and in some embodiments, may be raised to the top of a runnable queue. When a match does not occur, the process may remain in a blocked or non-executing state. In some embodiments, a blocked process may be placed in an idle queue and may not be executed until a process scheduler determines that a message has been received that fulfills a function waiting for input. When the message fulfills the function, the process may be moved to a runnable queue.
Abstract:
The purity of a function may be determined after examining the performance history of a function and analyzing the conditions under which the function behaves as pure. In some cases, a function may be classified as pure when any side effects are de minimis or are otherwise considered trivial. A control flow graph may also be traversed to identify conditions in which a side effect may occur as well as to classify the side effects as trivial or non-trivial. The function purity may be used to identify functions for memoization. In some embodiments, the purity analysis may be performed by a remote server and communicated to a client device, where the client device may memoize the function.
Abstract:
A function may be memoized when a side effect is a read only side effect. Provided that the read only side effect does not mutate a memory object, the side effect may be considered as an input to a function for purity and memoization analysis. When a read only side effect may be encountered during memoization analysis, the read only side effect may be treated as an input to a function for memoization analysis. In some cases, such side effects may enable an impure function to behave as a pure function for the purposes of memoization.