TENSION-BASED METHODS FOR FORMING BANDWIDTH TUNED OPTICAL FIBERS FOR BI-MODAL OPTICAL DATA TRANSMISSION

    公开(公告)号:US20210032153A1

    公开(公告)日:2021-02-04

    申请号:US16936991

    申请日:2020-07-23

    Abstract: Methods of forming a bandwidth-tuned optical fiber for short-length data transmission systems include establishing a relationship between a change Δτ in a modal delay τ, a change ΔT in a draw tension T and a change Δλ in a BM wavelength λ of light in a BM wavelength range from 840 nm and 1100 nm for a test optical fiber drawn from a preform and that supports BM operation at the BM wavelength. The methods also include drawing from either the preform or a closely related preform the bandwidth-tuned optical fiber by setting the draw tension based on the established relationships of the aforementioned parameters so that the bandwidth-tuned optical fiber has a target bandwidth greater than 2 GHz·km at a target wavelength within the BM wavelength range.

    SYSTEMS AND METHODS FOR MEASURING A MODAL DELAY AND A MODAL BANDWIDTH

    公开(公告)号:US20210006331A1

    公开(公告)日:2021-01-07

    申请号:US16905117

    申请日:2020-06-18

    Abstract: The present disclosure is directed to systems and methods for calculating a modal time delay and a modal bandwidth. For example, a method may include: transmitting an intensity-modulated light through a mode conditioner to generate a mode-conditioned intensity-modulated light; transmitting the mode-conditioned intensity-modulated light through an optical fiber under test (FUT) to excite a plurality of modes of the optical FUT; converting the mode-conditioned intensity-modulated light transmitted through the optical FUT into an electrical signal; measuring, based on the electrical signal, a transfer function or a complex transfer function of the optical FUT based on at least on one pair of the plurality of modes; calculating a modal delay time of the optical FUT based on the transfer function or the complex transfer function; and calculating a modal bandwidth of the optical FUT based on the modal delay time, the modal bandwidth being calculated for any given launch conditions of the plurality of modes.

    COUPLED MULTICORE OPTICAL FIBER
    25.
    发明申请

    公开(公告)号:US20200326472A1

    公开(公告)日:2020-10-15

    申请号:US16829460

    申请日:2020-03-25

    Abstract: Multimode optical fibers are disclosed herein. In some embodiment disclosed herein, a multimode optical fiber having a bandwidth of greater than 2 GHz·km includes: a glass matrix having a front endface, a back endface, a length (L), a refractive index n20 and a central axis (AC); and a plurality of cores arranged within the glass matrix, wherein the plurality of cores run generally parallel to the central axis between the front and back endfaces and having respective refractive indices n50, wherein n50>n20, wherein the glass matrix serves as a common cladding for the plurality of cores so that each core and the common cladding define a waveguide, wherein each core is a single mode at an operating wavelength; and wherein any two cores have an center-to-center spacing s of 3 μm to 20 μm and a coupling coefficient of greater than 10 m−1 but less than 200 m−1.

    Laser controlled ion exchange process and glass articles formed therefrom

    公开(公告)号:US10737976B2

    公开(公告)日:2020-08-11

    申请号:US15718559

    申请日:2017-09-28

    Abstract: A method for forming ion-exchanged regions in a glass article by contacting an ion source with at least one surface of the glass article, forming a first ion-exchanged region in the glass article by heating a first portion of the glass article with a laser, and forming a second ion-exchanged region in the glass article. Characteristics of the first ion-exchanged region may be different from characteristics of the second ion-exchanged region. A depth of the ion-exchanged region may be greater than 1 μm. A glass article including a first ion-exchanged region, and a second ion-exchanged region having different characteristics from the first ion-exchanged region. The thickness of the glass article is less than or equal to about 0.5 mm.

    Optical fiber with low fictive temperature

    公开(公告)号:US10696580B2

    公开(公告)日:2020-06-30

    申请号:US16189096

    申请日:2018-11-13

    Abstract: An optical fiber with low fictive temperature along with a system and method for making the optical fiber are provided. The system includes a reheating stage that heats the fiber along the process pathway to a temperature sufficient to lower the fictive temperature of the fiber by relaxing the glass structure and/or driving the glass toward a more nearly equilibrium state. The fiber is drawn from a preform, conveyed along a process pathway, cooled and subsequently reheated to increase the time of exposure of the fiber to temperatures conducive to lowering the fictive temperature of the fiber. The process pathway may include multiple reheating stages as well as one or more fiber-turning devices.

    Laminated glass articles and process for making same

    公开(公告)号:US10661533B2

    公开(公告)日:2020-05-26

    申请号:US15036312

    申请日:2014-11-10

    Abstract: A laminated glass article includes at least a first layer, a second layer in direct contact with the first layer, and an optical property difference between the first layer and the second layer. The optical property difference includes at least one of: (a) a transmission profile difference between a transmission profile of the first and second layers in a wavelength range from 200 nm to 2500 nm; or (b) a light-polarizing difference, whereby the second layer is light-polarizing with respect to electromagnetic irradiation in the wavelength range from 200 nm to 2500 nm; or (c) a refractive index difference between refractive indices of the first and second layers of at least 0.005, wherein one layer includes a base glass composition and the other layer includes the base glass composition and a dopant in an amount sufficient to cause the refractive index difference.

Patent Agency Ranking