Abstract:
A temperature independent reference circuit includes first and second bipolar transistors with commonly coupled bases. First and second resistors are coupled in series between the emitter of the second bipolar transistor and ground. The first and second resistors have first and second resistance values, R1 and R2, and third and second temperature coefficients, TC3 and TC2, respectively. The resistance values being such that a temperature coefficient of a difference between the base-emitter voltages of the first and second bipolar transistors, TC1, is substantially equal to TC2×(R2/(R1+R2))+TC3×(R1/(R1+R2)), resulting in a reference current flowing through each of the first and second bipolar transistors that is substantially constant over temperature. A third resistor coupled between a node and the collector of the second bipolar transistor has a value such that a reference voltage generated at the node is substantially constant over temperature.
Abstract:
An example circuit includes a regulator circuit coupled to first and second nodes. A capacitance circuit and a slew rate control circuit are coupled between the first and second nodes. The regulator circuit is coupled to charge a capacitance of the capacitance circuit with a charge current. The slew rate control circuit is coupled to control a change in voltage over change in time between the first and second nodes during a power up mode of the circuit. The slew rate control circuit further includes a switch and a resistor. The slew rate control circuit is coupled to switch the switch in response to a voltage between the first and second nodes. A voltage drop across the resistor is limited to a base-emitter voltage drop of a transistor coupled between the first and second nodes to set the change in voltage over change in time.
Abstract:
A circuit to discharge a capacitance between input terminals of a power system is disclosed. An example circuit includes a control circuit coupled to an input of a power system. The control circuit is coupled to detect whether an electrical energy source is coupled to an input of the power system. A switch is also included and is coupled to the control circuit and to the input of the power system. The control circuit is coupled to drive the switch in a first operating mode when the electrical energy source is coupled to the input of the power system. The control circuit is coupled to drive the switch in a second operating mode when the electrical energy source is uncoupled from the input of the power system. A capacitance coupled between input terminals of the input of the power system is discharged through the switch to a threshold voltage in less than a maximum period of time from when the electrical power source is uncoupled from the input terminals of the power system.
Abstract:
A temperature independent reference circuit includes first and second bipolar transistors with commonly coupled bases. First and second resistors are coupled in series between the emitter of the second bipolar transistor and ground. The first and second resistors have first and second resistance values, R1 and R2, and third and second temperature coefficients, TC3 and TC2, respectively. The resistance values being such that a temperature coefficient of a difference between the base-emitter voltages of the first and second bipolar transistors, TC1, is substantially equal to TC2×(R2/(R1+R2))+TC3×(R1/(R1+R2)), resulting in a reference current flowing through each of the first and second bipolar transistors that is substantially constant over temperature. A third resistor coupled between a node and the collector of the second bipolar transistor has a value such that a reference voltage generated at the node is substantially constant over temperature.
Abstract:
An integrated circuit (IC) comprises a rectifier/regulator circuit coupled to receive an ac source voltage and output a regulated dc voltage. The rectifier/regulator circuit includes first and second switching elements that provide charging current when enabled. The first and second switching elements do not provide charging current when disabled. A sensor circuit is coupled to sense the regulated dc voltage and generate a feedback control signal coupled to the rectifier/regulator circuit that enables the first and second switching elements when the regulated dc voltage is above a target voltage, and disables the first and second switching elements when the regulated dc voltage is below the target voltage.
Abstract:
An example controller includes a constant current control circuit and an integrator included in the constant current control circuit. The constant current control circuit is to be coupled to receive an input current sense signal, an input voltage sense signal, and an output voltage sense signal. The control circuit is adapted to regulate an output current of a power supply by generating a control signal to control switching of a switch. The integrator is coupled to integrate the input current sense signal during a switching period of the control signal to generate an integrated signal representative of a charge taken from an input voltage source of the power supply. The constant current control circuit is adapted to control the switching of the switch such that the integrated signal is proportional to a ratio of the output voltage sense signal to the input voltage sense signal.
Abstract:
A computer readable storage medium includes executable instructions to assess system cache resources, inter-process communication requirements and staging requirements to divide an extract, transform, load (ETL) dataflow task into a plurality of sub-tasks. The sub-tasks are then executed in parallel on distributed resources.
Abstract:
A three dimensional (3D) integrated circuit (IC), 3D IC chip and method of fabricating a 3D IC chip. The chip includes multiple layers of circuits, e.g., silicon insulator (SOI) CMOS IC layers, each including circuit elements. The layers may be formed in parallel and one layer attached to another to form a laminated 3D chip.
Abstract:
An integrated circuit (IC) design, method and program product for reducing IC design power consumption. The IC is organized in circuit rows. Circuit rows may include a low voltage island powered by a low voltage (Vddl) supply and a high voltage island powered by a high voltage (Vddh) supply. Circuit elements including cells, latches and macros are placed with high or low voltage islands to minimize IC power while maintaining overall performance. Level converters may be placed with high voltage circuit elements.
Abstract:
A method, system and program product are described for generating a clock distribution network on an integrated circuit by determining an allowable placement region for each of a set of clock tree leaf elements in the integrated circuit. This allowable placement region is generated by determining and intersecting a set of sub-regions under different constraints, each of which identifies an area in which the clock tree leaf element is placed to satisfy the respective constraint. Constraints for which sub-regions are determined include timing constraints in the form of slacks and congestion constraints. After allowable placement regions have been determined, the clock tree leaf elements are clustered, and each clock tree leaf element is placed at a location within its allowable placement region which minimizes some cost function for that clustering.