Abstract:
The present invention relates to a digital clock generation apparatus. The digital clock generation apparatus is directed to providing a digital clock generation apparatus in which hardware is simple, duty cycles are easily controlled, and various duty cycles and various frequency clocks (n× clocks) are provided as compared to a 1× single-phase clock generation apparatus or a 1× multi-phase clock generation apparatus based on the conventional programmable delay element chain.
Abstract:
Provided are a DC-DC converter driving device and a driving method thereof, the DC-DC converter driving device including an error detector configured to compare a first feedback voltage corresponding to a first output terminal with a first compensation reference voltage to generate a first error voltage, and configured to compare a second feedback voltage corresponding to a second output terminal with a second compensation reference voltage to generate a second error voltage, an interference detector configured to determine interference between the first and second output terminals on the basis of the first and second error voltages to generate an interference error voltage, and a reference voltage compensator configured to assign a weight to the interference error voltage to generate the first and second compensation reference voltages, and thus priorities are determined for outputs of the DC-DC converter and weights according thereto are assigned to reduce occurrence of cross-regulation.
Abstract:
Provided are an electronic circuit, a linear regulating circuit, and a DC-DC converting circuit. An embodiment of the inventive concept includes a linear regulating circuit unit for generating, by comparing output voltages and corresponding reference voltages, a transient signal indicating that at least one of the output voltages is in a transient state, or a steady signal indicating that each of the output voltages is in a steady state, and for controlling the output voltages on the basis of the steady signal and the transient signal, an energy storing unit for storing energy used to generate the output voltages, a ground switch unit for controlling connection between the energy storing unit and a ground terminal, an input switch unit for controlling connection between at least one input terminal and the energy storing unit, and an output switch unit for controlling connection between output loads and the energy storing unit.
Abstract:
Disclosed is a spherical wheel motor including: a spherical rotor having freedom of rotation along surrounding magnetized directions; a stator formed in a dome shape enclosing the rotor and configured to form magnetization at various angles through a plurality of coils distributed therein, and impart the freedom of rotation to the rotor; and a driving unit configured to identify a position of the rotor, supply current to each coil of the stator according to the position of the rotor, and drive the rotor.
Abstract:
A flexible piezoelectric energy harvesting device includes a first flexible electrode substrate, a piezoelectric layer disposed on the first flexible electrode substrate, and a second flexible electrode substrate disposed on the piezoelectric layer. The piezoelectric layer may include a plurality of first piezoelectric lines spaced apart from each other in one direction and a plurality of second piezoelectric lines respectively filling spaces between the first piezoelectric lines.
Abstract:
Provided is a motor driving circuit which transmits a driving signal to a motor, including a gate driver generating the driving signal corresponding to a pulse width modulation signal, a pulse width modulation signal generator generating the pulse width modulation signal according to Hall sensor signals received from Hall sensors mounted in the motor, a current sensor measuring a link current provided to the gate driver, a low pass filter outputting a filter current that high frequency components are removed from the measured link current, and a minimum power consumption estimating unit generating a lead angle according to a start signal with reference to the filter current, wherein the pulse with modulating signal is changed according to the lead angle.
Abstract:
Provided is a motor position detecting unit that includes a first computing element configured to output three-phase back-electromotive foreces (back-EMFs) based on a linear computation; a second computing element configured to output three-phase back-EMF based on a non-linear computation; and a computing controller configured to receive a control signal, three-phase voltage and current, and selecting any one of the first and second computing elements based on the received control signal, the received three-phase voltages and currents, wherein the control signal includes information on operation modes of an external motor.