Abstract:
A phase difference film and a circularly polarizing film each achieve suppressed coloration when viewed from the front direction, a smaller difference in tint between views from the front direction and the oblique direction, and suppressed image unevenness, where the film is applied to an image display panel, in particular, an organic EL panel; as well as an image display device including the circularly polarizing film. The phase difference film includes optically anisotropic layers A and B, in which a retardation RthA of layer A in the thickness direction at a wavelength of 550 nm is larger than 0, layer A exhibits predetermined optical properties, a retardation RthB of layer B in the thickness direction at a wavelength of 550 nm is smaller than 0, layer B satisfies predetermined optical properties, and the angle formed between a slow axis of the optically anisotropic layers A and B is 90°±10°.
Abstract:
The present invention provides a circularly polarizing plate that makes it possible to realize a bendable display device having reduced reflectivity and reflective tint and has excellent bending resistance, and a display device including a circularly polarizing plate. The circularly polarizing plate of the present invention is a circularly polarizing plate used for a bendable display device and includes a polarizer, and a phase difference film that is arranged on one side of the polarizer. The phase difference film includes a λ/2 plate and a λ/4 plate, the λ/2 plate and the λ/4 plate each include a liquid crystal compound, and a slow axis direction of the phase difference film is adjusted to define an angle of 75 to 105 degrees with respect to a bending direction of the display device.
Abstract:
An optical film is provided and has retardations satisfying relations (1) to (3): 0≦Re(550)≦10 (1); −25≦Rth(550)≦25 (2); and |I|+|II|+|III|+|IV|>0.5(nm) (3), with definitions: I=Re(450)−Re(550); II=Re(650)−Re(550); III=Rth(450)−Rth(550); and IV=Rth(650)−Rth(550), wherein Re(450), Re(550) and Re(650) are in-plane retardations measured with lights of wavelength of 450, 550 and 650 nm, respectively; and Rth(450), Rth(550) and Rth(650) are retardations in a thickness direction of the optical film, which are measured with lights of wavelength of 450, 550 and 650 nm, respectively.
Abstract translation:提供了一种光学膜,并且具有满足关系式(1)至(3)的延迟:0≦̸ Re(550)≦̸ 10(1); -25≦̸ Rth(550)≦̸ 25(2); 和| I | + | II | + | III | + | IV |> 0.5(nm)(3),其定义为:I = Re(450)-Re(550) II = Re(650)-Re(550); III = Rth(450)-Rth(550); 并且IV = Rth(650)-Rth(550),其中Re(450),Re(550)和Re(650)分别是用波长为450,550和650nm的光测量的面内延迟; 和Rth(450),Rth(550)和Rth(650)分别是在450,550和650nm的波长的光下测量的光学膜的厚度方向的延迟。
Abstract:
A method for producing an optical film including: laminating a hard coat layer on one side of an optical substrate in roll form, the hard coat layer having a transparent support and an optical anisotropic layer. The transparent support is laminated on the optical anisotropic layer, the one side is a transparent support-side of the optical substrate, the hard coat layer is obtained by coating, drying and curing a composition for forming a hard coat layer containing a curable monomer, a photo-polymerization initiator, and a solvent. The solvent is a mixture of at least one solvent selected from (S-1) and (S-2) and at least one solvent selected from (S-3), or a mixture of at least one solvent selected from (S-1) and at least one solvent selected from (S-2): (S-1) solvents dissolving the transparent support; (S-2) solvents swelling the transparent support; and (S-3) solvents neither dissolving nor swelling the transparent support.
Abstract:
To provide an optical film, which may be used as a λ/4 plate and may provide a display device which has specific optical characteristics, may be manufactured with high productivity and has an excellent 3D-display performance. To provide a 3D-display device having a physical properties having excellent antireflective property and light fastness with high productivity. An optical film having at least one optically anisotropic layer, wherein an in-plane retardation. Re at an arbitrary wavelength in a visible light region is 80 nm to 201 nm, an Nz value represented by the following equation is 0.1 to 0.9, and when the in-plane retardations at wavelengths of 450 nm, 550 nm and 650 nm are referred to as Re450, Re550 and Re650, respectively, Re450/Re550 is 1.18 or less and Re650/Re550 is 0.93 or more. Nx=0.5+Rth/Re (Rth: a retardation in a thickness direction)