Abstract:
Modified mineral fillers, derived from either a coarse particle kaolin clay or a coarse particle ATH, having excellent utility in thermoset polymers as low paste viscosity fillers are disclosed. The method of treatment involves the use of specific weight ratio combinations of a silane and a long chain aliphatic alcohol. The treatment of clay can also involve the auxiliary use of a surfactant in small amounts, which is utilized to emulsify the silane and aliphatic alcohol treatment components in water either individually or as a co-emulsion blend prior to their addition to the clay. The surfactant, which is preferably a nonionic surfactant having a HLB value of 12-18, aides in uniformly treating all the clay particle surfaces with the silane/alcohol treatment combination. Coarse particle clays having general utility in the invention are those having an average Stokes equivalent particle diameter of at least 3.0 microns, while the coarse particle ATH fillers having general utility in the invention are those having a BET surface area value less than 5.0 m.sup.2 /g. Clays or ATH so treated with the inventive silane/alcohol treatment provide unique viscosity reduction benefits in thermoset polymers unattainable by using either treatment additive alone in any amount. This low viscosity characteristic allows the treated mineral products to be used at high loadings in various thermoset compounds, as fillers or extenders, which is advantageous in terms of reducing cost and/or gaining certain performance properties, such as physical reinforcement, composite surface smoothness or flame retardancy.
Abstract:
A synthetic alkali metal silicate pigment is modified with a source of a water soluble zirconium ion to form an oxy-hydroxy zirconium species precipitate on the pigment surface. The surface modified pigment is made by slurrying the pigment and reacting it with the source of a water soluble zirconium ion. The surface modified pigment provides improvements over conventional synthetic alkali metal silicate pigments in terms of optical properties, particularly in paper applications, and physical properties, particularly in rubber applications. The surface modified pigment is also useful as an extender or replacement for TiO.sub.2, a conventional synthetic alkali metal silicate such as a sodium-aluminosilicate pigment, a clay, a calcined clay or the like.
Abstract:
High performance synthetic sodium aluminosilicate compositions, and the method of making the same by the hydrothermal reaction of certain delaminated kaolin clays with select sodium silicate reagents, result in enhanced performance flatting agents for paint systems and anti-block agents for plastic film applications.
Abstract:
The present invention relates to slurries of synthetic alkali metal silicates with fine particles kaolin clay. The slurries consists of at least 50% solids which solids comprise an approximately 50:50 combination of the fine kaolin clay and the synthetic alkali metal silicate (SAMS). The integrated composition of the SAMS products is an entity having an overall composition ofxM.sub.2 O:Al.sub.2 O.sub.3 :ySiO.sub.2 Owhere x is the number of moles of alkali metal oxide and is an integer from 0.01 to 2.0, M is an alkali metal, y is the number of miles of SiO.sub.2 in the unique SAMS composition, and z is the number of moles of bound water and is an integer ranging from 1.0 to 5.0. The composition essentially comprises altered kaolin clay platelets with an integral rim or protuberance of essentially amorphous alkali metal silicate-kaolin reaction product. The slurry is useful in latex paint systems.
Abstract:
The flow monitoring device comprises a housing having a passageway therethrough for liquid flow through the housing. The passageway has an inlet opening and an outlet opening. A first thermistor is provided for sensing the temperature of the liquid in the passageway at a place near the inlet opening. A heating resistor is provided for heating the liquid at a place near the outlet opening and a second thermistor is provided for sensing the temperature of the liquid at the place near the outlet opening. A control circuit controls the input of heat energy to the heating resistor for heating the liquid just enough to maintain a predetermined temperature differential between the first and second thermistors. The passageway has a first larger-in-cross-section passageway portion at the place of the first thermistor for enhancing temperature sensing, a second larger-in-cross-section passageway portion at the place of the second thermistor for enhancing temperature sensing and a smaller-in-cross-section passage between the first and second larger passageway portions to cause a higher flow rate between those portions to thermally isolate those portions thereby to minimize, if not altogether eliminate, thermal pollution between those portions. The first and second passageway portions gradually widen from their inlet and outlet ends to the larger-in-cross-section portions to minimize turbulent flow through said first and second portions.
Abstract:
A low visibility landing system is provided for guiding aircraft on landing approaches. The low visibility landing system may aid a pilot during landing in low visibility conditions such that an aircraft may descend to lower altitudes without visual contact with the runway than is possible with other landing systems. The system may use various navigational systems to produce a hybrid signal that may be more stable than individual signals of those navigational systems. The hybrid signal is compared to a predetermined landing approach plan to determine the deviation of the aircraft from the landing approach plan and to provide guidance to the pilot to get the aircraft back onto the landing approach plan. The system may also use multiple navigational systems to perform checks on an operation of a primary navigational system to ensure that the primary navigational system is operating accurately.
Abstract:
A repulpable wax containing paper product consists essentially of a hot melt formulation with an effective amount of an inorganic mineral filler such as clay. The inorganic mineral filler is in an amount which permits the article coated with the hot melt—inorganic mineral filler formulation to be repulped and recycled.
Abstract:
A method of preparing a surface treated barium sulfate product is disclosed which has improved dispersibility in end use applications such as polymeric formulations. The method includes mixing a silicon-hydride containing polysiloxane, in neat or in aqueous emulsion form, with a quantity of barium sulfate particles and then optionally drying the resultant mixture. The silicon-hydride containing polysiloxane is deposited on and chemically bonded to the surface of the barium sulfate particles.
Abstract:
An effective production method for silane-treated clays having exceptional reinforcing effects with respect to rubber, and compositions using these silane-treated clays are offered. With the silane-treated clay production method, a functional silane is predispersed or emulsified in water by means of a surfactant in order to mix the functional silane with kaolin clay and thereby uniformly surface-treat the kaolin clay with the functional silane. The surfactant should preferably be a non-ionic surfactant with an HLB value in the range of 8-18. The silane-treated clay formed by surface-treating kaolin clay by means of these functional silanes characteristically contains low residual levels of the non-ionic surfactants. The functional silanes can be either vinyl or sulfur functional silanes. The silane treated clays are useful as fillers or extenders in rubber compositions, particularly those employing silicas and/or carbon blacks.
Abstract:
An effective production method for silane-treated clays having exceptional reinforcing effects with respect to rubber, and compositions using these silane-treated clays are offered. With the silane-treated clay production method, a functional silane is predispersed or emulsified in water by means of a surfactant in order to mix the functional silane with kaolin clay and thereby uniformly surface-treat the kaolin clay with the functional silane. The surfactant should preferably be a non-ionic surfactant with an HLB value in the range of 8-18. The silane-treated clay formed by surface-treating kaolin clay by means of these functional silanes characteristically contains low residual levels of the non-ionic surfactants. The functional silanes can be either vinyl or sulfur functional silanes. The silane treated clays are useful as fillers or extenders in rubber compositions, particularly those employing silicas and/or carbon blacks.