Abstract:
A semiconductor fin fabrication method includes: providing a substrate; selectively epitaxially growing a first mask layer in a predetermined zone on the substrate; selectively epitaxially growing a first epitaxial layer on the substrate by using the first mask layer as a mask; and removing the first mask layer and a part, under the first mask layer, of the substrate by using the first epitaxial layer as a mask and by using an anisotropic etching method, so as to form a fin under the first epitaxial layer. According to the foregoing solutions, a manner in which a selective epitaxial growth technology and an anisotropic etching technology are combined is used It can be ensured that a semiconductor fin and a surface of a gate oxidized layer are perpendicular to each other, roughness of a surface of the semiconductor fin is reduced, and a fin with a smooth side surface is formed.
Abstract:
A tunneling field effect transistor with a new structure and a preparation method thereof are provided. The tunneling field effect transistor includes an active region between a source and a drain, a gate dielectric layer, and a gate located on a side of the gate dielectric layer deviating from the source, and a tunneling region disposed between the gate dielectric layer and the source and in contact with both the gate dielectric layer and the source. The source includes at least a first area and a second area perpendicularly connected in an “L” shape. The tunneling region is in contact with at least the first area and the second area. The gate dielectric layer is in contact with at least the tunneling region and the source.
Abstract:
An application management method, a terminal, a computer readable storage medium, and a computer program product including an instruction are disclosed. The method includes: suspending a background application when the background application meets a preset condition and disconnecting a communication link between the background application and a communications module when suspending the background application. Applicable to management of background applications on terminals, this method is intended to resolve a problem existing in the prior art that a battery life of the terminal is reduced when a large quantity of applications run in the background.
Abstract:
This application discloses a method for reducing power consumption of a terminal, and a terminal, and relates to the field of terminal technologies, to resolve a problem of relatively high power consumption of a terminal caused by a background application program. The method includes: when a background power consumption current value of the terminal is greater than a preset current value, controlling, by the terminal, a target application program, to reduce the background power consumption current value, where the background power consumption current value is a sum of power consumption current values of all background application programs on the terminal. The target application program includes at least one or more of the following application programs: a background application program whose use frequency is lower than a preset frequency threshold, a background application program whose power consumption is greater than a preset power consumption threshold, and a background application program with abnormal power consumption. The method is applicable to a process of controlling a background application program.
Abstract:
The application discloses a tunneling field-effect transistor, including: a substrate layer; a rectangular semiconductor strip formed on an upper surface of the substrate layer, where the rectangular semiconductor strip includes a first source region, a first channel region, a drain region, a second channel region, and a second source region that are disposed in sequence along a first direction; a first gate dielectric layer covering an outer surface of a first part of the first source region and a second gate dielectric layer covering an outer surface of a third part of the second source region.
Abstract:
A CSI-RS transmission method and a network device are provided, to resolve a technical problem that very large pilot resource overheads are occupied for sending CSI-RSs, and reduce pilot transmission resources occupied for sending CSI-RSs, to reduce pilot transmission overheads. The method includes: determining, by a network device, that at least two of M quantities of antenna ports respectively used by M radio remote units RRUs for sending a CSI-RS to same user equipment are not equal, and instructing the M RRUs to send P CSI-RSs on N resource elements, where at least one of the N resource elements carries content of at least two of the P CSI-RSs, the P CSI-RSs are CSI-RSs respectively sent by P RRUs in the M RRUs, M is an integer greater than or equal to 2, P is an integer less than or equal to M, and N is a positive integer.
Abstract:
A data processing method and an apparatus to resolve problems that a response speed is low and image display is not even during dragging, caused when a terminal processes reported-point data. The method includes generating, by a touchscreen, reported-point data, reporting the reported-point data to a microprocessor according to a preset reported-point reporting rate, receiving, by the microprocessor, the reported-point data, and receiving a frame synchronization signal from an application processor, processing, by the microprocessor according to the frame synchronization signal, a first amount of reported-point data received within a preset time to obtain a second amount of reported-point data, transmitting the second amount of reported-point data to the application processor, receiving, by the application processor, the second amount of reported-point data, and generating an image display frame according to the second amount of reported-point data.
Abstract:
This application provides a display screen backlight control method, a display screen backlight control apparatus, and a terminal. The method includes determining a backlight to-be-switched-on region of a display screen according to an operation on the display screen, determining a specified to-be-lighted light source according to the backlight to-be-switched-on region, and lighting the specified to-be-lighted light source and illuminating at least the backlight to-be-switched on region of the display screen while maintaining other light sources associated with region outside of the backlight to-be-switched-on region in an unilluminated state.
Abstract:
A complementary tunneling field effect transistor and a manufacturing method are disclosed, which includes: a first drain region and a first source region that are disposed on a substrate, where they include a first dopant; a first channel that is disposed on the first drain region and a second channel that is disposed on the first source region; a second source region that is disposed on the first channel and a second drain region that is disposed on the second channel, where they include a second dopant; a first epitaxial layer that is disposed on the first drain region and the second source region, and a second epitaxial layer that is disposed on the second drain region and the first source region; and a first gate stack layer that is disposed on the first epitaxial layer, and a second gate stack layer that is disposed on the second epitaxial layer.
Abstract:
A tunneling field effect transistor with a new structure and a preparation method thereof are provided. The tunneling field effect transistor includes an active region between a source and a drain, a gate dielectric layer, and a gate located on a side of the gate dielectric layer deviating from the source, and a tunneling region disposed between the gate dielectric layer and the source and in contact with both the gate dielectric layer and the source. The source includes at least a first area and a second area perpendicularly connected in an “L” shape. The tunneling region is in contact with at least the first area and the second area. The gate dielectric layer is in contact with at least the tunneling region and the source.