Abstract:
A surgical system that may include a remotely controlled surgical instrument. The surgical instrument may be coupled to a tool driver that can spin and actuate the instrument. The instrument may include an actuator rod that is coupled to an end effector and detachably connected to a push rod. The push rod can move relative to the handle to actuate the end effector. The end effector may include a fixture that conforms to the shape of a needle. The handle can be secured to the tool driver by inserting pins into corresponding slots that are located on both the instrument and the tool driver. The instrument can be controlled by an operator through a pair of handles. Each handle may be mechanically balanced by a counterweight. The surgical system may also include a touchpad that allows the operator to enter parameters of the system.
Abstract:
A system for performing minimally invasive cardiac procedures. The system includes a pair of surgical instruments that are coupled to a pair of robotic arms. The instruments have end effectors that can be manipulated to hold and suture tissue. The robotic arms are coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the end effectors. The movement of the handles is scaled so that the end effectors have a corresponding movement that is different, typically smaller, than the movement performed by the hands of the surgeon. The scale factor is adjustable so that the surgeon can control the resolution of the end effector movement. The movement of the end effector can be controlled by an input button, so that the end effector only moves when the button is depressed by the surgeon. The input button allows the surgeon to adjust the position of the handles without moving the end effector, so that the handles can be moved to a more comfortable position. The system may also have a robotically controlled endoscope which allows the surgeon to remotely view the surgical site. A cardiac procedure can be performed by making small incisions in the patient's skin and inserting the instruments and endoscope into the patient. The surgeon manipulates the handles and moves the end effectors to perform a cardiac procedure such as a coronary artery bypass graft.
Abstract:
Non-stressed, high strength, substantially inflexible, rigid, cement-containing pipe, for example, asbestos-cement pipe well adapted as high pressure water pipe, comprising a tubular article body of spirally wound up layers of asbestos-cement, and a plurality of helical windings of a continuous filament of an aromatic polyamide fiber known and obtainable as KEVLAR aramid fiber about one or more of the asbestos-cement layers within the interior of the pipe without being stretched and without being in tension. The aromatic polyamide fiber of the continuous filament is of high tensile strength of about 390,000 psi or higher and a low elongation capability of no more than 7%, and the continuous filament of the belical windings is maintained about the cement-containing composition within the interior of the pipe without being stretched and without being in tension. Non-stressed, high strength concrete pipe is also embodied in the invention. The outer exposed main surface of the pipe is usually free or substantially free of the continuous filament.
Abstract:
The present disclosure generally relates to nanoparticles having about 0.2 to about 35 weight percent of a therapeutic agent; and about 10 to about 99 weight percent of biocompatible polymer such as a diblock poly(lactic) acid-poly(ethylene)glycol. Other aspects of the invention include methods of making such nanoparticles.
Abstract:
A thermic torpedo for preparing and delivering reinstatement materials has an internal chamber defining at least one compartment for containing graded aggregate and a second compartment for containing a stabilising agent, an external skin for insulating the contents of said internal chamber, a cap or lid for securely containing the contents of the torpedo in which is located at least one telescopic probe which can be driven through the compartments to heat and/or mix the contents thereof and at least one aperture through which the reinstatement materials may be expelled for delivery to a work site.
Abstract:
The present disclosure generally relates to nanoparticles having about 0.2 to about 35 weight percent of a therapeutic agent; and about 10 to about 99 weight percent of biocompatible polymer such as a diblock poly(lactic) acid-poly(ethylene)glycol. Other aspects of the invention include methods of making such nanoparticles.
Abstract:
The present disclosure generally relates to lyophilized pharmaceutical compositions comprising polymeric nanoparticles which, upon reconstitution, have low levels of greater than 10 micron size particles. Other aspects of the invention include methods of making such nanoparticles.
Abstract:
The present disclosure relates in part to pharmaceutical compositions comprising polymeric nanoparticles having certain glass transition temperatures. Other aspects of the invention include methods of making such nanoparticles.
Abstract:
A composite proppant having a proppant substrate such as a porous ceramic or silica sand coated with magnetic particles and a method of propping a subterranean formation using a composition consisting essentially of the composite proppant.
Abstract:
The present disclosure generally relates to therapeutic nanoparticles. Exemplary nanoparticles disclosed herein may include about 1 to about 20 weight percent of a vinca alkaloid; and about 50 to about 99 weight percent biocompatible polymer.