Abstract:
A method and apparatus of creating a miniaturized source of radiation and delivering radiation to a location such as therapy location. The radiation source comprises a member made of a material emitting electrons when energy is supplied to the member. There is an electron retarding member disposed opposite the electron emitting member, and the electron retarding member is made of a material emitting ionizing radiation when electrons are retarded therein. The radiation source is further provided on an elongated member in the distal region thereof, and the elongated member is insertable into the body.
Abstract:
The invention relates to a sensor and guide wire assembly (21) for intravascular measurements of physiological variables in a living body, comprising a core wire (22), a first coil (23), a jacket (24), and a second coil (25). The jacket (24) comprises a first end portion (24a), which is crimped onto the core wire (22) and over which a portion of the first coil (23) is threaded, and a second end portion (24b), which is crimped onto the core wire (22) and over which a portion of the second coil (25) is threaded.
Abstract:
A transmitter unit with an attachable energy source is provided for a sensor guidewire. The transmitter unit is adapted to be connected to a proximal end of a sensor guidewire provided, at its distal end, with a sensor to measure a physiological parameter inside a patient. In some embodiments, the transmitter unit is adapted to wirelessly communicate by a communication signal with a communication unit, arranged in connection with an external device, in order to transfer measured physiological data to the external device. The attachable energy source can be a battery pack or battery holder provided with connecting electrical connecting surfaces. Preferably, the connection is protected from penetrating fluids by a protective seal.
Abstract:
There is a sensor guide wire (1) for intravascular measurements of physiological variables in a living body. The sensor guide wire (1) comprises at least two elongate sections, a first tubular elongate section (2) being tubular in the longitudinal direction of the sensor guide wire (1), and a second elongate section (3) that is adapted to be inserted a predetermined distance (5) into said first tubular section (2), a sensor element (10) provided in the distal part of said sensor guide wire (1), for measuring the physiological variable and to generate a sensor signal in response to said variable, at least one signal transmitting cable connected to the sensor element (10) to transmit sensor signals to a male connector provided in the proximal part of said sensor guide wire (1). The tubular section (2) is provided with at least one through-going opening (4) in a direction perpendicular to the longitudinal direction of the guide wire (1) and positioned a second predetermined distance (6) from one end of the tubular section (2), wherein the guide wire (1) comprises a locking member (7) to be fitted into the opening (4) in order to join the sections (2, 3) together when the second elongate section (3) is inserted into the tubular section (2).
Abstract:
Rapid exchange guide unit comprising an elongated support member 3, and a guide wire member (11) provided with a guide wire lumen (13) having a distal guide wire opening (15) and a proximal guide wire opening (17), the guide wire lumen is arranged close to the distal end of said elongated support member, and is adapted to receive a guide wire. The rapid exchange guide unit further comprises at least one sensor (19) arranged close to the distal end of the elongated support member, and being adapted to measure a parameter in a living body, and to generate a sensor signal in dependence of the measured parameter. The sensor signal is applied to a signal processing unit adapted to process the sensor signal and to generate a processed sensor signal.
Abstract:
A sensor and guide wire assembly (21; 41; 61; 81) for intravascular measurements of a physiological variable in a living body includes a sensor element (22; 42; 62; 82) mounted at a distal sensor portion (23; 43; 63; 83) of a guide wire (24; 44; 64; 84), wherein the sensor portion exhibits a maximal cross-sectional dimension which is larger than a maximal cross-sectional dimension of guide wire portions (28, 30; 48, 50; 68, 70) located proximally of the sensor portion.
Abstract:
The invention relates to a sensor (23) adapted for a sensor and guide wire assembly for intravascular measurements in a living body, wherein the sensor (23) comprises a pressure sensitive part (24) and an electronic part (25), said pressure sensitive part (24) comprising a first chip (26) provided with at least one pressure sensitive device (27) and at least one piezoelectric element (35), and said electronic part (25) comprising a second chip (28) provided with at least one electric circuit, and wherein said pressure sensitive part (24) and electronic part (25) are spatially separated from each other and are electrically connected with at least one electrical lead (29).
Abstract:
A sensor and insertion assembly 2 is used for intravascular measurement of pressure in a living body. The assembly includes a sensor chip 6 having a substrate body 8 with a recess covered by a pressure sensitive film 10 thereby forming a cavity 12. A piezoelectric element, preferably in the form of a piezoelectric film 14, is arranged in connection with the pressure sensitive film, and energy is applied to the piezoelectric element such that acoustic waves are generated in the element. The piezoelectric element is arranged to generate an output signal, representing the pressure at the film, in dependence on the measured properties of the acoustic waves related to the deflection of the pressure sensitive film.
Abstract:
A miniaturized radiation device, having a support member in the form of a flexible sheet, and a circuit pattern of electrical contact pads and interconnecting conductor lines or leads provided on said support member. The pads are interconnected via said patterned lines. There is also a plurality of radiation chips electrically connected to selected ones of said pads. Preferably the device is wrapped around a core member, that may be a wire, such that the assembly is suitable for the insertion into a living body for the controlled administration of radiation at a therapy location.
Abstract:
A method and apparatus of creating a miniaturized source of radiation and delivering radiation to a location such as a therapy location. The radiation source includes a member made of a material emitting electrons when energy is supplied to the member. There is an electron retarding member disposed opposite the electron emitting member, and the electron retarding member is made of a material emitting ionizing radiation when electrons are retarded therein. The radiation source is further provided on an elongated member in a distal region thereof, and the elongated member is insertable into the body.