Abstract:
Aspects of a method and system for a successive approximation analog-to-digital converter with dynamic search algorithms are provided. In some embodiments, a successive approximation analog-to-digital converter includes a digital-to-analog converter, a comparator, and a search and decode logic modules which cooperate to generate a digital output code representative of the analog input voltage based on a dynamic search algorithm. The dynamic search algorithms may alter a sequence of reference voltages used to successively approximate the analog input voltage based on one or more characteristics of the analog input voltage.
Abstract:
A microwave backhaul system may comprise a monolithic integrated circuit comprising an on-chip transceiver, digital baseband processing circuitry, and auxiliary interface circuitry. The on-chip transceiver may process a microwave signal from an antenna element to generate a first pair of quadrature baseband signals and convey the first pair of phase-quadrature baseband signals to the digital baseband processing circuitry. The auxiliary interface circuitry may receive one or more auxiliary signals from a source that is external to the monolithic integrated circuit and convey the one or more auxiliary signals to the digital baseband processing circuitry. The digital baseband processing circuitry may be operable to process signals to generate one or more second pairs of phase-quadrature digital baseband signals.
Abstract:
Aspects of a method and system for a successive approximation analog-to-digital converter with dynamic search algorithms are provided. In some embodiments, a successive approximation analog-to-digital converter includes a digital-to-analog converter, a comparator, and a search and decode logic modules which cooperate to generate a digital output code representative of the analog input voltage based on a dynamic search algorithm. The dynamic search algorithms may alter a sequence of reference voltages used to successively approximate the analog input voltage based on one or more characteristics of the analog input voltage.
Abstract:
Aspects of a method and system for a successive approximation analog-to-digital converter with dynamic search algorithms are provided. In some embodiments, a successive approximation analog-to-digital converter includes a digital-to-analog converter, a comparator, and a search and decode logic modules which cooperate to generate a digital output code representative of the analog input voltage based on a dynamic search algorithm. The dynamic search algorithms may alter a sequence of reference voltages used to successively approximate the analog input voltage based on one or more characteristics of the analog input voltage.
Abstract:
Aspects of a method and system for a successive approximation analog-to-digital converter with dynamic search algorithms are provided. In some embodiments, a successive approximation analog-to-digital converter includes a digital-to-analog converter, a comparator, and a search and decode logice modules which cooperate to generate a digital output code representative of the analog input voltage based on a dynamic search algorithm. The dynamic search algorithms may alter a sequence of reference voltages used to successively approximate the analog input voltage based on one or more characteristics of the analog input voltage.
Abstract:
Aspects of a method and system for a successive approximation analog-to-digital converter with dynamic search algorithms are provided. In some embodiments, a successive approximation analog-to-digital converter includes a digital-to-analog converter, a comparator, and a search and decode logic modules which cooperate to generate a digital output code representative of the analog input voltage based on a dynamic search algorithm. The dynamic search algorithms may alter a sequence of reference voltages used to successively approximate the analog input voltage based on one or more characteristics of the analog input voltage.
Abstract:
Methods and systems for a configurable low-noise amplifier with programmable band-selection filters may comprise a low-noise amplifier (LNA) with a low pass filter coupled to a first input of the LNA and a high pass filter coupled to a second input of the LNA. The low pass filter and the high pass filter may also be coupled to a signal source input. Signals may be received in a pass band of the high pass filter and a pass band of the low pass filter. Input signals in the pass band of the one filter (but not signals in the pass band of the other filter) may be amplified by coupling the one input of the LNA to ground and coupling the other filter to ground utilizing a shunt resistor. The filters may be configurable and may each comprise at least one inductor and at least one capacitor.
Abstract:
A microwave backhaul system may comprise a monolithic integrated circuit comprising an on-chip transceiver, digital baseband processing circuitry, and auxiliary interface circuitry. The on-chip transceiver may process a microwave signal from an antenna element to generate a first pair of quadrature baseband signals and convey the first pair of phase-quadrature baseband signals to the digital baseband processing circuitry. The auxiliary interface circuitry may receive one or more auxiliary signals from a source that is external to the monolithic integrated circuit and convey the one or more auxiliary signals to the digital baseband processing circuitry. The digital baseband processing circuitry may be operable to process signals to generate one or more second pairs of phase-quadrature digital baseband signals.
Abstract:
A signal receiver chip may be configured to handle a plurality of satellite signals. In this regard, for each received satellite signal the signal receiver chip may determine whether the received satellite signal is unprocessed or partially-processed off-chip; and when the received satellite signal is partially-processed off-chip, at least a portion of processing functions performed in the signal receiver chip may be bypassed. The received satellite signals may then be processed, to generate a corresponding output signals that is configured for communication over a local link. The processing functions bypassed in the signal receiver chip may comprise signal band conversion, particularly down converting from a first band used for over-the-air communication to a second band that is used during handling at receiver side. In this regard, the first band comprises K-band, Ku-band, or Ka-band, whereas the second band comprises L-band, half-L-band, or Extended-L-band.
Abstract:
Methods and systems are provided for guard band detection and/or frequency offset detection. For example, a signal processing circuit may be operable to determine, for each of a plurality of downconverted signals, one or more frequency offsets that are associated with one or more corresponding local oscillators (LOs) used in obtaining the plurality of downconverted signals; and relating to the determined frequency offsets may be generated for the plurality of downconverted signals. The signal processing circuit may perform, based on the generated information, one or both of a band stacking operation and a channel stacking operation so as to prevent channels/bands being stacked on each other or being overlapped.