Abstract:
A lighting device for a headlight for generating a light emission pattern in a far field is provided. The lighting device includes at least two phosphor surfaces arranged rotationally movably between different positions, and at least one light source spaced apart from the phosphor surfaces and serving for emitting primary light for illuminating a portion of the phosphor surfaces. An associated predetermined light emission pattern is generatable in respectively exactly one predetermined position of the phosphor surfaces.
Abstract:
A lighting device may include a light generating unit configured to generate at least two light beams; at least one phosphor surface which is illuminatable by the light beams; and at least one movable deflection mirror for the scanning deflection of the light beams onto the phosphor surface, such that the light beams impinge on the at least one phosphor surface in a spaced-apart fashion, and such that at least one region of the phosphor surface is illuminatable by at least two light beams in a manner spaced apart temporally.
Abstract:
A method for generating a light emission pattern by illuminating at least one phosphor surface by at least one primary light beam is provided. The method includes: directing the primary light beam only onto a partial surface of the entire illuminatable phosphor surface; and illuminating at least one partial region of said partial surface more intensely than in the case of uniform illumination of the illuminatable phosphor surface.
Abstract:
A remote phosphor converter apparatus may include a holder with at least one reference visible from the outside, at least one converter element held by the holder and at least one primary light emitter element which is held by the holder and configured to direct primary light emitted thereby to the converter element. An illumination device may include at least one remote phosphor converter apparatus.