Abstract:
A safety chain circuit includes a plurality of protection devices connected between a first chain end and a second chain end, and an amplifier. The amplifier includes a first device switch and a second device switch connected between an input and an output, a first enabling switch connected between the second chain end and a second enabling switch, and a first control switch and a second control switch. The first enabling switch selectively enables the first control switch to control the first device switch. The second enabling switch selectively enables the second control switch to control the second device switch. The first control switch, when enabled, selectively controls the first device switch in response to receiving a first control signal. The second control switch, when enabled, selectively controls the second device switch in response to receiving a second control signal.
Abstract:
An electronic safety actuation device for braking an elevator car includes a safety brake movable between a non-braking position and a braking position, a first electronic safety actuator operably coupled to the safety brake via a first link member, and a second electronic safety actuator operably coupled to the safety brake via a second link member. Operation of the first electronic safety actuator applies a force to the first link member to move the safety brake from the non-braking position to the braking position. Operation of the second electronic safety actuator applies a force to the second link member to move the safety brake from the non-braking position to the braking position.
Abstract:
An elevator power distribution system includes an elevator car (114; 214; 314; 414; 514) configured to travel in a lane (113, 115, 117; 213; 313, 315, 317; 413, 415, 417; 513, 515, 517) of an elevator shaft (111) and a linear propulsion system configured to impart force to the elevator car. The linear propulsion system includes a first portion (216), mounted in the lane and a second portion (218) mounted to the elevator car configured to coact with the first portion (216) to impart movement to the elevator car. A plurality of electrical buses (371, 372, 373, 374; 471, 472, 473, 474; 571, 572, 573, 574) are disposed within the lane and configured to provide power to the first portion, a rectifier (361a, 362a, 363a, 364a, 361b, 362b, 363b, 364b, 361c, 362c, 363c, 364c; 461a, 462a, 463a, 464a, 461b, 462b, 463b, 464b, 461c, 462c, 463c, 464c; 561a, 562a, 563a, 564a, 561b, 562b, 563b, 564b, 561c, 562c, 563c, 564c) is electrically connected to each of the plurality of buses and configured to convert power provided between the respective bus and a grid (302; 402; 502), and a battery backup (381a, 382a, 383a, 384a, 381b, 382b, 383b, 384b, 381c, 382c, 383c, 384c; 481a, 482a, 483a, 484a, 481b, 482b, 483b, 484b, 481c, 482c, 483c, 484c; 585a, 585b, 585c) is electrically connected with the rectifier and configured to transfer power to or receive power from the rectifier.
Abstract:
The present disclosure relates generally to a selectively operable safety brake including a magnetic brake operably coupled to a rod and disposed adjacent to a metal component, the magnetic brake configured to move between an engaging position and a non-engaging position, said magnetic brake, when in the engaging position contemporaneously with motion of the machine, moving the rod in to thereby move the safety brake from the non-braking state into the braking state, and an electromagnetic component including a retention apparatus, the electromagnetic component configured to move the magnetic brake from the engaging position to the non-engaging position upon receipt of a resetting signal.
Abstract:
An elevator system includes a primary source of electrical power; a power unit having a power supply, the power supply producing DC power from the primary source of electrical power. A rescue storage device provides power to the elevator system when the primary source of electrical power is unavailable. The rescue storage device is coupled to an output of the power supply to provide additional DC power with the DC power when the primary source of electrical power is available and an increased power requirement is present.
Abstract:
An elevator system includes a hoistway and an elevator car positioned in the hoistway and configured to travel along the hoistway. The elevator car includes an elevator car door. A door operator assembly is fixed in the hoistway at a landing floor and includes a sensor to sense presence of the elevator car at the landing floor; and a door operator mechanism to open both the elevator car door and a landing floor door when the sensor senses presence of the elevator car at the landing floor. A light source may be fixed at the hoistway and a light transmitter is positioned at the elevator car to gather light from the light source and output the light into an interior of the elevator car. A ventilation system may be fixed at the hoistway and is interactive with the elevator car to condition an interior of the elevator car.
Abstract:
A brake member actuation mechanism for a safety brake member of a hoisted structure includes a brake actuator (12) formed of a ferro-magnetic material configured to be electronically actuated to magnetically engage a guide rail (14) upon detection of the hoisted structure exhibiting a predetermined condition, wherein the magnetic engagement of the brake actuator and the guide rail actuates movement of the safety brake member into a braking position.
Abstract:
The present disclosure relates generally to housing assembly for a safety actuation device, the assembly including a mounting plate, a first channel wall and a second channel wall extending substantially perpendicular from the mounting plate, the first channel wall including a first channel wall interior surface, and the second channel wall including a second channel wall interior surface, wherein the first channel wall is positioned substantially parallel to the second channel wall to form a channel therebetween, and at least one guide device affixed to the first channel wall interior surface and the second channel wall interior surface.
Abstract:
A device for a friction force provider for an emergency safety actuator for an elevator is disclosed. The friction force provider may include a housing having a first end and an opposing second end, where the first end may define an opening. The friction force provider may further include a primary magnet positioned within the housing and configured to move between an armed position and a working position. The primary magnet may be configured to create a force on a rail of an elevator system in the working position and be held within the housing in the armed position.
Abstract:
An elevator system includes a primary source of electrical power; a power unit having a power supply, the power supply producing DC power from the primary source of electrical power; and a rescue storage device providing power to the elevator system when the primary source of electrical power is unavailable; the rescue storage device coupled to an output of the power supply to provide additional DC power with the DC power when the primary source of electrical power is available and an increased power requirement is present.