Abstract:
A thermally integrated hotbox apparatus combining a steam reformer, a plurality of solid oxide fuel cell (SOFC) stacks, a plurality of oxidant manifolds, and at least one heat extractor. The steam reformer occupies a central position in the hotbox, around which are disposed in spaced-apart relation a plurality of SOFC stacks. A burner may be associated with the steam reformer, either within or outside the hotbox. An oxidant manifold is disposed between each pair of adjacent SOFC stacks. A heat exchanger is incorporated between an SOFC stack and an oxygen manifold. The hotbox design optimally captures thermal heat from the SOFC stacks for use in producing steam and operating the endothermic steam reformer. The apparatus reduces duty cycle of the burner, which produces heat and steam needed for operation of the endothermic steam reformer.
Abstract:
A gas-fired burner adapted for use on a liquid fuel. A method for essentially smokeless start-up and steady state operation of a gas-fired burner on a liquid fuel. The apparatus integrates a catalytic liquid fuel reformer with a flame burner designed for operation on a gaseous fuel of high Wobbe Index, e.g., natural gas. The method involves reacting a mixture of a liquid fuel and oxidant in a catalytic reformer to obtain a gaseous reformate having a low Wobbe Index; and thereafter combusting the gaseous reformate, optionally augmented with liquid co-fuel and oxidant, in the gas-fired burner under diffusion flame conditions. The invention allows commercial gas-fired appliances to be operated on a liquid fuel, thereby offering advantages in logistics and camp operations.
Abstract:
A portable, compact, real-time and accurate sensor and method for deriving a physicochemical property of a liquid fuel, such as cetane number, carbon content, carbon/hydrogen (C/H) atomic ratio, or heating value (net heat of combustion). The sensor comprises a constant-volume ignition chamber equipped for measuring ignition delay and magnitude of a peak rise in pressure or temperature following dispensation of a liquid fuel into the chamber. The sensor utilizes air at atmospheric pressure and microliter quantities of fuel. The sensor can be implemented in real-time refinery operations for blending diesel fuels that meet government mandated cetane number standards as well as in applications for standardizing jet, biodiesel, and synthetic fuels, which presently are not classified by any physicochemical property.
Abstract:
An individual solid oxide cell (SOC) constructed of a sandwich configuration including in the following order: an in oxygen electrode, a solid oxide electrolyte, a fuel electrode, a fuel manifold, and at least one layer of mesh. In one embodiment, the mesh supports a reforming catalyst resulting in a solid oxide fuel cell (SOFC) having a reformer embedded therein. The reformer-modified SOFC functions internally to steam reform or partially oxidize a gaseous hydrocarbon, e.g. methane, to a gaseous reformate of hydrogen and carbon monoxide, which is converted in the SOC to water, carbon dioxide, or a mixture thereof, and an electrical current. In another embodiment, an electrical insulator is disposed between the fuel manifold and the mesh resulting in a solid oxide electrolysis cell (SOEC), which functions to electrolyze water and/or carbon dioxide.
Abstract:
A reforming process and apparatus exhibiting improved catalyst longevity towards reforming a high sulfur-containing liquid fuel. The process involves contacting in a first reforming zone a first oxidant and a liquid fuel containing high molecular weight organosulfur compounds with a partial oxidation catalyst under CPOX reaction conditions to form a first reformate stream containing a mixture of unconverted and partially-converted hydrocarbons and one or more low molecular weight sulfur compounds; and then contacting in a second reforming zone the first reformate stream with steam and optionally a second oxidant in the presence of an autothermal reforming catalyst under ATR reaction conditions to form a second reformate stream containing carbon monoxide and hydrogen and one or more low molecular weight sulfur compounds. The low molecular weight sulfur compounds can be readily removed from the first and/or second reformate streams by gas phase adsorption methods.
Abstract:
A Sabatier process involving contacting carbon dioxide and hydrogen in a first reaction zone with a first catalyst bed at a temperature greater than a first designated temperature; feeding the effluent from the first reaction zone into a second reaction zone, and contacting the effluent with a second catalyst bed at a temperature equal to or less than a second designated temperature, so as to produce a product stream comprising water and methane. The first and second catalyst beds each individually comprise an ultra-short-channel-length metal substrate. An apparatus for controlling temperature in an exothermic reaction, such as the Sabatier reaction, is disclosed.
Abstract:
This invention pertains to a reinforced porous metal substrate that finds utility in a backbone-structured metal-supported electrochemical cell and to methods of fabricating the reinforced porous metal substrate. In another aspect, this invention pertains to a backbone-structured metal-supported electrochemical cell repeat unit constructed by weld sealing or diffusion bonding the reinforced porous metal substrate to a metal frame. In another aspect, this invention pertains to an electrochemical cell and stack.
Abstract:
A process for hydrogen recovery from refinery gas system comprising supplying the refinery gas to an inlet manifold fluidly coupled to a conditioning stage, the conditioning stage comprising a reactor having a reforming catalyst deposited on an ultra-short-channel-length metal substrate; supplying oxidant to the conditioning stage via the inlet manifold; supplying steam from a steam generator to the conditioning stage via the inlet , manifold; reacting the refinery gas in the conditioning stage; and discharging a product through a discharge outlet fluidly coupled to the conditioning stage, the discharge outlet configured to flow the product for use by a downstream reformer. The process allows to either increase the H2 production rate or lower the firing rate while maintaining a constant H2 production rate for the downstream steam reformer, independent of the feed compositional variability of the refinery or still gas.
Abstract:
A thermally integrated hotbox apparatus combining a steam reformer, a plurality of solid oxide fuel cell (SOFC) stacks, a plurality of oxidant manifolds, and at least one heat extractor. The steam reformer occupies a central position in the hotbox, around which are disposed in spaced-apart relation a plurality of SOFC stacks. A burner may be associated with the steam reformer, either within or outside the hotbox. An oxidant manifold is disposed between each pair of adjacent SOFC stacks. A heat exchanger is incorporated between an SOFC stack and an oxygen manifold. The hotbox design optimally captures thermal heat from the SOFC stacks for use in producing steam and operating the endothermic steam reformer. The apparatus reduces duty cycle of the burner, which produces heat and steam needed for operation of the endothermic steam reformer.
Abstract:
A thermophotovoltaic generator incorporating a two-stage combustor for providing heat to a thermophotovoltaic cell. Combustor parts include a partial oxidation reactor, which functions catalytically to convert a hydrocarbon fuel and a first supply of an oxidant into a gaseous partial oxidation product; and further include downstream thereof, a deep oxidation reactor including a premixer plenum fluidly connected to a heat spreader comprising a porous matrix, such as a ceramic foam. Functionally, the deep oxidation reactor converts the gaseous partial oxidation product and a second supply of oxidant into complete combustion products. Heat produced by the two-stage combustor generates radiative energy from a photon emitter, which is directly converted to electricity in a photovoltaic diode cell.