Abstract:
An imaging device of the present disclosure includes: a first and second imaging cells each including a photoelectric converter including a pixel electrode, an opposite electrode, and a photoelectric conversion layer between the pixel electrode and the opposite electrode, the photoelectric converter generating signal charge by photoelectric conversion, and charge detection circuit connected to the pixel electrode, the charge detection circuit detecting the signal charge; and a voltage supply circuit supplying a voltage such that, in a frame period, a potential difference between the pixel electrode and the opposite electrode of the first imaging cell at a start time of a charge accumulation period of the first imaging cell is made different from a potential difference between the pixel electrode and the opposite electrode of the second imaging cell at a start time of a charge accumulation period of the second imaging cell.
Abstract:
A method is for controlling an imaging device that allows switching of an operation mode between a first mode to perform imaging in a first imaging wavelength band and a second mode to perform imaging in a second imaging wavelength band different from the first imaging wavelength band. The method includes: determining whether ambient light includes near-infrared light based on information obtained in the first mode and information obtained in the second mode; and maintaining or changing the operation mode.
Abstract:
An imaging device includes a photoelectric converter that generates charge; a first charge transfer channel having a first end electrically connected to the photoelectric converter and a second end, and transferring the charge in a direction from the first end to the second end; a second charge transfer channel diverging from the first charge transfer channel at a first position and transferring a first part of the charge; a third charge transfer channel diverging from the first charge transfer channel at a second position different from the first position in the direction and transferring a part of the second part of the charge; and first and second charge accumulators that accumulate at least a part of the first and second part of the charge respectively. The imaging device does not include a gate that switches between cutoff and transfer of charge, in the first charge transfer channel.
Abstract:
A control method for an imaging element is a control method for an imaging element including a photoelectric converter and a peripheral circuit connected to the photoelectric converter. The control method for the imaging element includes receiving a predetermined input signal, and controlling the imaging element by switching between a normal imaging mode and a low power consumption mode based on the predetermined input signal. In the normal imaging mode, the imaging element is controlled to apply first voltage between the first electrode and the second electrode. In the low power consumption mode, the imaging element is controlled to apply second voltage between the first electrode and the second electrode and to stop part of operation of the peripheral circuit, the second voltage being larger than 0 V and smaller than the first voltage.
Abstract:
An organic device includes at least one electrode, an insulating layer adjacent to the at least one electrode in a plan view, and an organic layer that is continuously in contact with an upper surface of the at least one electrode and an upper surface of the insulating layer. The organic layer contains a polymer of an organic material. The organic material contains a basic molecular skeleton and a polymerizable functional group. In the polymer, the organic material is polymerized through the polymerizable functional group.
Abstract:
An imaging device includes a pixel electrode, a counter electrode, a first quantum dot that includes a first core which generates first signal charge and a first shell, a second quantum dot that includes a second core which generates second signal charge and a second shell. In a case where the potential difference between the pixel electrode and the counter electrode is a first potential difference, the first signal charge does not pass through the first shell and is held in the first core and the second signal charge passes through the second shell and is collected by the pixel electrode. In a case where the potential difference between the pixel electrode and the counter electrode is a second potential difference which is larger than the first potential difference, the first signal charge passes through the first shell and is collected by the pixel electrode.
Abstract:
An imaging device includes a pixel including a permittivity modulation element that includes opposite and pixel electrodes and a permittivity modulation structure whose permittivity changes according to the radiation of light, a capacitive element that includes first and second electrodes, and a detection circuit that outputs a signal corresponding to the potential of the pixel electrode. Also provided are a voltage supply circuit that applies first and second voltages in different first and second periods to one of the opposite electrode and the first electrode, and a signal processing circuit that generates a third signal being a difference between a first signal output from the detection circuit in the first period and a second signal output from the detection circuit in the second period. The potential difference between the opposite electrode and the first electrode when the second voltage is applied is less than when the first voltage is applied.
Abstract:
An imaging device includes a pixel, the pixel including a photoelectric converter which converts light into a signal charge and a charge detection circuit which detects the signal charge. The photoelectric converter includes a photoelectric conversion layer having a first surface and a second surface opposite to the first surface, a pixel electrode on the first surface, a first electrode adjacent to the pixel electrode on the first surface, the first electrode being electrically conductive to the photoelectric conversion layer, and a counter electrode on the second surface, the counter electrode facing the pixel electrode and the first electrode. A shortest distance between the pixel electrode and the first electrode in a plan view is smaller than a shortest distance between the pixel electrode and the first electrode.
Abstract:
An imaging device of the present disclosure includes: an imaging cell including a photoelectric converter including a first electrode, a second electrode, and a photoelectric conversion layer between the first electrode and the second electrode, the photoelectric converter generating signal charge by photoelectric conversion, and a charge detection circuit connected to the first electrode, the charge detection circuit detecting the signal charge; a signal line electrically coupled to the first electrode; and a voltage supply circuit selectively supplying a first voltage and a second voltage different from the first voltage to the signal line.
Abstract:
An imaging apparatus includes a unit pixel including a pixel electrode; a counter electrode facing the pixel electrode; a photoelectric conversion layer disposed between the pixel electrode and the counter electrode; and a computing circuit that acquires a first signal upon a first voltage being applied between the pixel electrode and the counter electrode, the first signal corresponding to an image captured with visible light and infrared light and a second signal upon a second voltage being applied between the pixel electrode and the counter electrode, the second signal corresponding to an image captured with visible light, and generates a third signal by performing a computation using the first signal and the second signal, the third signal corresponding to an image captured with infrared light.