Abstract:
A direct smelting plant for producing molten metal from metalliferous feed material in a direct smelting process is disclosed. The plant includes a process controller for adjusting the volumetric flow rate of fuel gas supplied to a burner unit of at least one of the unit operations of the plant so as to at least meet selected requirements of the plant to operate the direct smelting process.
Abstract:
A direct smelting vessel which is adapted to contain a molten bath of metal and slag is disclosed. The vessel includes an off-gas duct that has: (a) a first section which has a relatively slight upward inclination to the horizontal from an inlet end of the first section; and (b) a second section which extends upwardly from an upper end of the first section at a relatively steep inclination to the horizontal.
Abstract:
A direct smelting process for producing metal from a metalliferous feed material is disclosed. The direct smelting process is a molten bath-based process in which smelting occurs predominantly in the metal layer, carrier gas/metalliferous feed material/solid carbonaceous material are injected into the metal layer via lances/tuyeres, and oxygen-containing gas is injected into the top space above the molten bath and post-combusts reaction gases released from the bath. The injection of metalliferous feed material and solid carbonaceous material causes molten material to be projected from the molten bath as splashes, droplets and streams and to form a transition zone. The process is characterized by forming a pipe of a solid material on an outlet end of at least one lance/tuyere while injecting the metalliferous feed material and the carbonaceous material through the lances/tuyeres and thereby extending the effective length of the lance/tuyere or the lances/tuyeres.
Abstract:
A process for direct smelting a metalliferous feed material is disclosed. The process includes the steps of partially reducing metalliferous feed material and substantially devolatilising coal in a pre-reduction vessel and producing a partially reduced metalliferous feed material and char. The process also includes direct smelting the partially reduced metalliferous feed material to molten metal in a direct smelting vessel using the char as a source of energy and as a reductant and post-combusting reaction gas produced in the direct smelting process with pre-heated air or oxygen-enriched air to a post-combustion level of greater than 70% to generate heat required for the direct smelting reactions and to maintain the metal in a molten state.
Abstract:
A process for direct smelting metalliferous feed material is disclosed. Iron oxides are partially reduced in a solid state in a pre-reduction vessel. The partially reduced iron oxides are smelted to molten iron in a direct smelting vessel which contains a molten bath of iron and slag and is supplied with a solid carbonaceous material as a source of reductant and energy and with an oxygen-containing gas for post-combusting carbon monoxide and hydrogen generated in the vessel. The direct smelting step generates an off-gas that contains sulphur and the off-gas is released from the direct smelting vessel. Part only of the off-gas released from the direct smelting vessel is used in the pre-reduction step to pre-reduce iron oxides in the pre-reduction vessel. Part only of the off-gas is used in the pre-reduction step in order to control the amount of sulphur that is returned with the partially reduced iron oxides to the direct smelting vessel.
Abstract:
A method of producing metals and metal alloys from metal oxides is disclosed. The method comprises the steps of partially pre-reducing the metal oxides to a pre-reduction degree of at least 60% in one or more pre-reduction stages. Thereafter, the method comprises completely reducing the metal oxides and melting the metal in a smelt reduction stage. The method is further characterized by carrying out at least one of the pre-reduction stages with one or more of natural gas, reformed natural gas, and partially reformed natural gas as a source of reductant.
Abstract:
The production of highly metallized feed, an intermediate product produced solely by gaseous reductants in two stage reduction processes of that kind, encounters sticking problems, which interfere with continuous processing and productivity. This problem has been overcome by exploiting a high volatile carbonaceous material, such as coal, as the reducing agent for the (partially reduced) oxide ore starting material in the solid state prereduction stage of a duplex process, in which the final stage consists of smelting, to produce the final metal (alloy). Intermediate products of the first stage are char from the coal, which avoids the sticking problem, partially reduced ore and CO and H2, which participate in the prereduction. The process has particular application to iron ores, such as haematite and magnetite and similar derivatives, namely, chromite and oxidic nickel ores. The process may be extended to a triplex, which includes drying, preheating and partial reduction in the first stage, followed by further partial reduction and finally the smelting step. The final stage of solid state reduction takes place at a temperature of at least 550° C., preferably 750-900° C. At least 50% of metallization is essential for satisfactory processing, preferably at least 80%.
Abstract:
A molten bath-based direct smelting process includes controlling the process conditions in a direct smelting vessel so that molten slag in a molten bath of metal and slag in the vessel has a viscosity in a range of 0.5-5 poise in an operating temperature range for the process.
Abstract:
A steelmaking process is disclosed. The process includes producing molten steel and molten steelmaking slag in a steelmaking process, the steelmaking slag including iron units and flux units, and thereafter producing molten iron in a molten bath based direct smelting process using a substantial portion of the steelmaking slag as part of the feed material requirements for the direct smelting process. A direct smelting process is also disclosed. The process includes pre-treating ferrous material including steelmaking slag and thereafter direct smelting molten iron using the pretreated ferrous material as part of the feed material for the process.
Abstract:
A direct smelting process and a fixed, ie non-rotatable, metallurgical vessel for producing metal from a metalliferous feed material is disclosed. The process is a molten bath-based process which includes injecting solid feed materials with a carrier gas into the molten bath via one or more downwardly extending lance/tuyere (11) and causing gas flow from the molten bath at a flow rate of at least 0.30 Nm3/s/m2 at the interface between the metal layer (15) and the slag layer (16) of the molten bath (under quiescent conditions).