Abstract:
Described herein are user-wearable devices that include an optical sensor, and methods for use therewith. In certain embodiments, an optical sensor of a user-wearable device (e.g., a wrist-worn device) is used to detect blue light that is incident on the optical sensor and to produce a blue light detection signal indicative thereof, and thus, indicative of the response of the user's intrinsically photosensitive Retinal Ganglion Cells (ipRGCs). In dependence on the blue light detection signal, there is a determination of a metric indicative of an amount of blue light detected by the optical sensor. The metric is compared to a corresponding threshold, and a user notification is triggered in dependence on results of the comparing, wherein the user notification informs a person wearing the user-wearable device to adjust their exposure to light.
Abstract:
A user-wearable device includes a housing and a band that straps the housing to a portion of a user's body (e.g., wrist). One or more skin contact sensors in and/or on the housing can sense biometric information of a user wearing the device. An authentication module performs or receives results of an authentication determination that compares the sensed biometric information to baseline biometric information to determine whether they match. An on-body detector uses one or more of the sensors to determine whether the device is being worn by a user. After a user is authenticated based on a match between the sensed and baseline biometric information, the authentication module continually concludes that the user is authenticated for at least a period of time, without an additional comparison between sensed and baseline biometric information, if the on-body detector detects that the user-wearable device is still being worn by the user.
Abstract:
A user-wearable device include a wireless transceiver, a primary radiator antenna and a secondary radiator antenna. The primary radiator antenna produces a first radio frequency (RF) radiation pattern when driven by the wireless transceiver, wherein the first RF radiation pattern is at least partially circularly polarized. The secondary radiator antenna, which is spaced apart from the primary radiator antenna, is configured to modify the first RF radiation pattern produced by the primary radiator antenna to thereby produce a second RF radiation pattern having increased RF radiation in a specific direction (e.g., away from the user's/wearer's skin) compared to the first RF radiation pattern. Inclusion of both the primary radiator antenna and the secondary radiator antenna increases an overall antenna efficiency (e.g., by about 3 dB) in the specific direction compared to if only the primary radiator antenna was included.
Abstract:
Technology is described for transferring one or more mobile tags using a light based communication protocol. A mobile device, for example a smart phone, with an image sensor and an illuminator, like a camera flash, initiates transfer of data formatted in a mobile tag displayed by another device by automatically controlling the illuminator to generate sequences of light representing data transfer messages. The other device, for example a user wearable computer device with sensors capturing biometric and health related data, has a photodetector unit for capturing the sequences of light and converting them into digital data. A processor of the other device identifies the data transfer messages and causes a display of one or more mobile tags responsive to the messages. In this way, a number of mobile tags may be used to transfer several kilobytes of biometric data, for example 4-7 KBs, using low power for the wearable device.
Abstract:
An integrated sensor module includes one or more packaged light source semiconductor devices and one or more packaged light detector semiconductor devices mounted to a top surface of a substrate. A pre-molded cover structure includes a portion molded from an opaque molding compound and a further portion molded from a light transmissive molding compound. For each of the packaged light source and light detector semiconductor devices, the pre-molded cover structure includes a pre-molded cavity covered by a window formed of the light transmissive molding compound. The pre-molded cover structure is attached to the substrate such that each of the packaged light source and light detector semiconductor devices fits within a respective cavity, and such that a barrier formed of the opaque molding compound is positioned between each packaged light source semiconductor device and light detector semiconductor device. The module can also include additional sensors and/or electrodes for use by sensors.
Abstract:
A base station identifies user-wearable devices being worn by a user, wherein each of the user-wearable devices is battery powered, includes a plurality of sensors, performs wirelessly communication, and is worn on a separate portion of the user's body. For each of the user-wearable devices, the base station identifies a portion of the user's body on which the user-wearable device is being worn. The base station also identifies an activity in which the user is engaged, and identifies multiple types of sensor data to be sensed using the sensors of the user-wearable devices, to enable tracking of metric(s) relevant to the activity in which the user is engaged. The base station determines how to distribute sensing responsibilities for the multiple types of sensor data among the sensors of the user-wearable devices being worn by the user, and selectively activates and deactivates individual sensors of each of the user-wearable devices.
Abstract:
A user-wearable devices includes an on-body detector that uses one or more sensors of the device to detect whether or not the user-wearable device is being worn by a user. When the user-wearable device is detected as being worn by a user it is operated in a first mode, and when the user-wearable device is detected as not being worn by a user it is operated in a second mode that consumes less power than the first mode. Operating the user-wearable device in the first mode can include enabling wireless communication between the user-wearable device and a base station. Operating the user-wearable device in the second mode can include disabling wireless communication between the user-wearable device and a base station. Operating the user-wearable device in the second mode can also include disabling sensors of the user-wearable device and/or placing sensors of the user-wearable device in a low power mode.
Abstract:
A battery powered user-wearable device includes a light source and a light detector and is configured to obtain at least two different types of physiological measurements using the light source and the light detector. During a first period of time, the user-wearable device is operated in accordance with a first operational mode that is used to obtain a first type of physiological measurement. In the first operational mode the light source is driven to emit pulses of light at a low frequency. During a second period of time, the user-wearable device is operated in accordance with a second operational mode that is used to obtain a second type of physiological measurement. In the second operational mode the light source is either driven to continually emit light or is driven to emit pulses of light at a high frequency. The first operational mode consumes less power than the second operational mode.