Abstract:
A display system is configured to convert Full-High Definition (FHD) image content into Ultra-High Definition (UHD) image content. The display system includes an interface configured to receive image content comprising a first resolution, such as FHD. The display system also includes a display device configured to display image content at a second resolution, such as UHD, the second resolution greater than the first resolution. The display system further includes one or more processors configured to: convert the image content from the first resolution to the second resolution; recover a spatial frequency of the converted image content as a function of a relative edge growth rate measured from the converted image content and an offline-determined relationship between the relative edge growth rates of the converted first image and its corresponding ground truth image; and provide the converted image content with the recovered spatial frequency to the display device.
Abstract:
One embodiment provides a method comprising receiving an input content, and receiving ambient contextual data indicative of one or more ambient lighting conditions of an environment including a display device. The input content has corresponding metadata that at least partially represents a creative intent indicative of how the input content is intended to be viewed. The method further comprises adaptively correcting the input content based on the ambient contextual data to preserve the creative intent, and providing the corrected input content to the display device for presentation. The adaptively correcting comprises applying automatic white balancing to the input content to correct color tone of the input content.
Abstract:
One embodiment provides a computer-implemented method that includes receiving region information from a stationary region detection process for a video. A processor performs a flat region ghosting artifact removal process that updates the region information with a flat region indicator utilizing the region information and the video. The processor further performs a region based luminance reduction process utilizing the updated region information with the flat region indicator for display ghosting artifact removal and burn-in protection.
Abstract:
One embodiment provides a method comprising determining one or more coordinates representing one or more skin tones in a device-independent color space. The one or more skin tones can include one or more colors of human skin captured in one or more pieces of content. The method further comprises building a dual-core geometric model based on a distribution of the one or more skin tones in the device-independent color space. The method further comprises providing the dual-core geometric model to an electronic device for use in determining a likelihood that an input color of an input content is a skin tone. The input content is adaptively enhanced, based on the likelihood, for presentation on a display connected to the electronic device.
Abstract:
One embodiment provides a method comprising determining one or more coordinates representing one or more skin tones in a device-independent color space. The one or more skin tones can include one or more colors of human skin captured in one or more pieces of content. The method further comprises building a dual-core geometric model based on a distribution of the one or more skin tones in the device-independent color space. The method further comprises providing the dual-core geometric model to an electronic device for use in determining a likelihood that an input color of an input content is a skin tone. The input content is adaptively enhanced, based on the likelihood, for presentation on a display connected to the electronic device.
Abstract:
A method includes determining, by a computing device, a working color space of a source content and a resulting content. The computing device models color saturation variations of different hues in the working color space with one or more properties of responses of a human vision system (HVS) to color stimulus. The computing device generates one or more color saturation variation models based on the responses of the HVS to color stimulus. An input color is mapped from the source content to an output color in the working color space using the one or more color saturation variation models.
Abstract:
One embodiment provides a method comprising determining a target color gamut of a display device, an inner zone of the target color gamut, and an outer zone of the target color gamut. The method further comprises dynamically determining, based on the inner zone and the outer zone, a path along which an input color in a source color gamut of an input content moves. The input color is outside the inner zone. The method further comprises mapping the input color from the source color gamut to an output color in the outer zone based on the path. The input color is rendered as the output color during presentation of the input content on the display device.
Abstract:
A display system converts Full-High Definition (FHD) image content into Ultra-High Definition (UHD) image content. The display system includes an interface that provides image content to a display having a first resolution. The display system also includes a processor that converts an input image from a second resolution to the first resolution. The first resolution is greater than the second resolution. The processor generates a first value corresponding to a lost high-frequency component (HFC) of the input image; generates an initial component of an output image; selects a patch of the input image; estimates a lost HFC of the patch of the initial component based on a portion of the lost HFC of the input image that corresponds to the selected patch; and generates the output image based on a sum of the patch of the initial component and the estimated lost HFC of the patch of the initial component.