Abstract:
To obtain projection images with high contrast when selective light irradiation is performed forward of its own vehicle. A lamp unit for a vehicular lamp system performing selective light irradiation to the surroundings of the own vehicle includes: a light source; an optical shutter part that modulates light emitted from the light source; and an optical system that projects the light transmitted through the optical shutter part. The optical shutter part includes: polarizers; a liquid crystal element disposed between the polarizers and where the initial alignment of liquid crystal molecules is horizontally aligned and causes an alignment change in the in-plane direction upon electric field application; a first optical plate which is a positive A-plate disposed between the polarizers closer to the light source and the liquid crystal element; and a second optical plate which is a positive C-plate disposed between the first optical plate and the liquid crystal element.
Abstract:
To facilitate lead wiring layout corresponding to an increase in the number of individual electrodes of the liquid crystal element in a vehicle headlamp system. The vehicle headlamp system that selectively performs light irradiation towards the periphery of its own vehicle includes a light source, a liquid crystal element, and a lens. The liquid crystal element includes a plurality of first individual electrode parts, a plurality of second individual electrode parts, and a first lead wiring part. The first lead wiring part includes a plurality of first individual wirings each of which is connected to one of the plurality of first individual electrode parts, and a plurality of second individual wirings each of which is connected to one of the plurality of second individual electrode parts and arranged through a gap formed between the adjacent first individual electrode parts in the first direction.
Abstract:
To reliably perform light irradiation in a vehicular lamp system using a liquid crystal element even in a cryogenic environment. A control device for a vehicular lamp comprising a light source and a liquid crystal element where the liquid crystal element is set to a light-shielded state and the light source is set to a light-on state to heat the liquid crystal element by the light emitted from the light source when the temperature of the liquid crystal element is estimated to be lower than a predetermined value.
Abstract:
A lighting device includes: a liquid crystal element having electrode pattern including a first portion and a second portion; drive circuit connected to the electrode pattern; polarizer disposed in front of the liquid crystal element and separated from the liquid crystal element in optical axis direction; analyzer disposed at rear of the liquid crystal element, and separated from the liquid crystal element in optical axis direction, wherein the polarizer and the analyzer constitute crossed Nicol polarizers; light source for supplying lights to the liquid crystal element within a predetermined incident angle range; and projection optical system projecting lights transmitted through the liquid crystal element forwardly; wherein the polarizer and the analyzer locally overlap with the liquid crystal element in projection normal to the liquid crystal element, and when the light source is turned on, the drive circuit supplies drive signal to the first portion of the electrode pattern which applies or releases voltages in compliance with circumstances, and supplies drive signal to the second portion of the electrode pattern which continuously applies voltage, lights transmitting through the first portion of the electrode pattern and projecting forward transmit both the polarizer and the analyzer, and lights transmitting through the second portion of the electrode pattern and projecting forward include components which do not transmit at least one of the polarizer and the analyzer.
Abstract:
A lighting device includes: a liquid crystal element having electrode pattern including a first portion and a second portion; drive circuit connected to the electrode pattern; polarizer disposed in front of the liquid crystal element and separated from the liquid crystal element in optical axis direction; analyzer disposed at rear of the liquid crystal element, and separated from the liquid crystal element in optical axis direction, wherein the polarizer and the analyzer constitute crossed Nicol polarizers; light source for supplying lights to the liquid crystal element within a predetermined incident angle range; and projection optical system projecting lights transmitted through the liquid crystal element forwardly; wherein the polarizer and the analyzer locally overlap with the liquid crystal element in projection normal to the liquid crystal element, and when the light source is turned on, the drive circuit supplies drive signal to the first portion of the electrode pattern which applies or releases voltages in compliance with circumstances, and supplies drive signal to the second portion of the electrode pattern which continuously applies voltage, lights transmitting through the first portion of the electrode pattern and projecting forward transmit both the polarizer and the analyzer, and lights transmitting through the second portion of the electrode pattern and projecting forward include components which do not transmit at least one of the polarizer and the analyzer.
Abstract:
There is provided a lighting fixture including: a light source that emits a light beam; an electrodeposition device that includes multiple pixels of which a transparent state and a mirror state are switchable, independently, and that is disposed such that a normal direction of a pixel surface is not parallel to an optical axis direction of an incident light beam on an optical path of a light beam emitted from the light source; and an optical system that emits, as an illumination beam, both a light beam transmitted through the electrodeposition device and a light beam reflected from the pixel in the mirror state in the electrodeposition device.
Abstract:
A non-spectacled stereoscopic display apparatus includes a light guide plate, first and second light sources, a single-face prism sheet, a transmissive display panel, a synchronous drive circuit adapted to synchronize the first and second light sources to display parallax images on the transmissive display panel, a phase difference plate, and an optically-modulating structure adapted to receive light emitted from the phase difference plate. The optically-modulating structure includes first and second transparent substrates, a prism array provided on the first transparent substrate, a first transparent electrode layer, a second transparent electrode layer, a liquid crystal layer, and first and second alignment layers for performing an aligning process upon liquid crystal molecules of the liquid crystal layer. The phase difference plate is adapted to rotate a main polarization angle of the single-face prism sheet by a predetermined angle to coincide with an aligning direction of the liquid crystal layer.
Abstract:
There is provided an electrochromic display that includes a display substrate, which includes a display electrode on a first substrate and an insulating film on or above the display electrode; a counter substrate having a counter electrode on a second substrate, the counter substrate facing the display substrate; and a color-developing layer containing an electrochromic material disposed in a region surrounded by a sealing member between the display substrate and the counter substrate. The insulating film is disposed on or above the display electrode except for a display region of the display electrode in the region surrounded by the sealing member.
Abstract:
To provide a liquid crystal element having multiple alignment domains with a simple configuration. The liquid crystal element includes: a first and a second substrate; a liquid crystal layer inbetween the two substrates; and a seal material with an injection port; where a first and a second alignment film each has an alignment regulating force in one direction on a surface in contact with the liquid crystal layer, a polymerized monomer is present at the interface between each of the two alignment films and the liquid crystal layer; the liquid crystal layer has a first region close to the injection port and a second region far from the injection port; and the first region has a high polymer density and has a pretilt angle in a direction opposite to the alignment regulating force, and the second region has a pretilt angle in the same direction as the alignment regulating force.
Abstract:
In a vehicular lamp, a polarization rotation element is disposed only in an optical path of second light from a second reflector toward a PBS, first light and the second light condensed toward a liquid crystal element are condensed at a first condensing point in common, the liquid crystal element is located at the first condensing point, the second light reflected by the PBS is condensed at a second condensing point deviated from the optical path of the light from a first reflector toward the PBS and the optical path of the second light from the second reflector toward the PBS.