Abstract:
An ear-worn electronic device comprises a housing configured to fit at least partially in an ear of a wearer, a power source situated in the housing, and a temperature sensor arrangement situated in or on the housing and coupled to the power source. The temperature sensor arrangement is configured to generate sensor signals in response to heat generated in the wearer's ear and a controller, situated in the housing and coupled to the power source and the temperature sensor arrangement, is configured to assess a fit of the device using the sensor signals.
Abstract:
An ear-wearable electronic device has a shell with an outer surface. A mounting void goes through the outer surface of the shell and exposes an internal volume of the shell. The mounting void is located at an ear-contacting region of the shell. The ear-wearable device includes a photoplethysmography sensor assembly having an optical transmission structure mounted in the mounting void and having a distal end exposed proximate the outer surface. The distal end of the optical transmission structure conforms to the outer surface of the shell at the ear-contacting region. The distal end is in contact with ear tissue of a user of the ear-wearable electronic device during use.
Abstract:
Embodiments are directed to an electronic device configured to measure temperature from within an ear canal having a first bend, a second bend, and a tympanic membrane. The device comprises an enclosure comprising an in-canal section dimensioned for deployment in the ear canal. The in-canal section comprises a trough extending axially along at least a portion of the in-canal section and arranged to be positioned between the first bend and the tympanic membrane when the in-canal section is fully deployed in the ear canal. A temperature sensor is disposed in the trough. The temperature sensor comprises a flexible circuit board, a distal temperature sensor disposed on the flexible circuit board, and a proximal temperature sensor disposed on the flexible circuit board and situated proximal of, and spaced apart from, the distal temperature sensor in an outer ear direction.
Abstract:
Disclosed herein, among other things, are methods and apparatus for hearing assistance devices, and in particular to behind the ear and receiver in canal hearing aids with distributed processing. One aspect of the present subject matter relates to a hearing assistance device including hearing assistance electronics in a housing configured to be worn above or behind an ear of a wearer. The hearing assistance device includes an ear piece configured to be worn in the ear of the wearer and a processing component at the ear piece configured to perform functions in the ear piece and to communicate with the hearing assistance electronics, in various embodiments.
Abstract:
A system may have a rechargeable hearing instrument with a power source, an ultraviolet (UV) sensor configured to convert received UV light into electrical power and charging circuitry coupled to the UV sensor and to the power source. The charging circuitry may use the electrical power to charge the power source. A charger may have a charging cavity configured to receive the rechargeable hearing instrument. A power source within the charger powers a UV light source located within the charger configured to provide UV light to the UV sensor of the rechargeable hearing instrument when the rechargeable hearing instrument is placed within the charging cavity.
Abstract:
A method for manufacturing a hearing instrument includes placing a component support structure at least partially in a bath of a resin liquid, wherein one or more operative components of the hearing instrument are attached to or contained within the component support structure prior to the component support structure being at least partially placed in the bath of the resin liquid. While the component support structure is at least partially in the bath, volumetric 3-dimensional (3D) printing is performed to form a shell of the hearing instrument attached to the component support structure.
Abstract:
An ear-wearable device includes a photoplethysmography (PPG) sensor. One or more processors of the ear-wearable device are configured to determine, based on sample values of a PPG signal generated by the PPG sensor, whether a user of the ear-wearable device has fallen.
Abstract:
A hearing device adapted for use by a wearer comprises an audio streaming circuit configured to receive electromagnetic audio streaming via a first communication link. A configuration circuit is configured to receive configuration parameters via a second communication link different from the first communication link for configuring the hearing device to receive the electromagnetic audio streaming. Control circuitry of the hearing device configures the hearing device to enable reception of the electromagnetic audio streaming in accordance with the received configuration parameters.
Abstract:
A hearing aid is provided with a switch that automatically, non-manually switches at least one of inputs, filters, or programmable parameters in the presence of a magnetic field.