Abstract:
A display device having a plurality of pixel structures, each of the plurality of the pixel structures including: a substrate; a first active pattern on the substrate; a first gate line on the first active pattern and extending in a first direction; a first connecting pattern on the first gate line and configured to transmit an initialization voltage; a second connecting pattern on the first connecting pattern and electrically connected to the first active pattern and the first connecting pattern; and a first electrode on the second connecting pattern and configured to be initialized in response to the initialization voltage.
Abstract:
An organic light-emitting display apparatus including an organic light-emitting diode emitting visible light, a driving thin film transistor driving the organic light-emitting diode, and a compensation thin film transistor. The compensation thin film transistor includes a compensation gate electrode, a compensation semiconductor layer, a compensation source electrode, and a compensation drain electrode. The compensation gate electrode includes a first gate electrode, and a second gate electrode electrically connected to the first gate electrode. The compensation drain electrode is electrically connected to the driving gate electrode of the driving thin film transistor. The compensation semiconductor layer includes a first semiconductor region overlapping the first gate electrode and a second semiconductor region overlapping the second gate electrode and disposed further from the compensation drain electrode than the first semiconductor region, and an area of the first semiconductor region is different than an area of the second semiconductor region.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes a substrate, an interlayer insulating layer arranged over the substrate and an OLED arranged over the interlayer insulating layer. The OLED display also includes a source electrode and a drain electrode arranged over the interlayer insulating layer and a via layer arranged over the interlayer insulating layer and having a via hole exposing the source electrode or the drain electrode. The interlayer insulating layer includes a projecting portion which projects toward the OLED in the via hole.
Abstract:
An organic light-emitting display apparatus is provided. The apparatus includes an organic light-emitting diode emitting visible light, a driving thin film transistor driving the organic light-emitting diode, and a compensation thin film transistor. The compensation thin film transistor includes a compensation gate electrode, a compensation semiconductor layer, a compensation source electrode, and a compensation drain electrode. The compensation gate electrode includes a first gate electrode, and a second gate electrode electrically connected to the first gate electrode. The compensation drain electrode is electrically connected to the driving gate electrode of the driving thin film transistor. The compensation semiconductor layer includes a first semiconductor region overlapping the first gate electrode and a second semiconductor region overlapping the second gate electrode and disposed further from the compensation drain electrode than the first semiconductor region, and an area of the first semiconductor region is less than that of the second semiconductor region.
Abstract:
An OLED display and a method of manufacturing the same are disclosed. In one aspect, the display device includes a plurality of pixels, wherein each of the pixels includes a plurality of wires including a first wire extending in a first direction and a second wire extending in a second direction crossing the first direction, the second wire having top and bottom portions opposing each other. The pixels also include a plurality of switching TFTs electrically connected to the wires, a driving TFT configured to supply a driving current, a storage capacitor electrically connected to the wires and the driving TFT, and a connecting wire electrically connecting the driving TFT to a selected one of the switching TFTs, wherein the connecting wire has top and bottom portions opposing each other, and wherein at least the top portions of the connecting wire and the second wire are formed on different layers.
Abstract:
An organic light-emitting display apparatus is provided. The apparatus includes an organic light-emitting diode emitting visible light, a driving thin film transistor driving the organic light-emitting diode, and a compensation thin film transistor. The compensation thin film transistor includes a compensation gate electrode, a compensation semiconductor layer, a compensation source electrode, and a compensation drain electrode. The compensation gate electrode includes a first gate electrode, and a second gate electrode electrically connected to the first gate electrode. The compensation drain electrode is electrically connected to the driving gate electrode of the driving thin film transistor. The compensation semiconductor layer includes a first semiconductor region overlapping the first gate electrode and a second semiconductor region overlapping the second gate electrode and disposed further from the compensation drain electrode than the first semiconductor region, and an area of the first semiconductor region is less than that of the second semiconductor region.
Abstract:
An electronic device includes a display panel having a first area, a second area, and a third area. The display panel includes a first pixel including a first light emitting element disposed in the first area and a first pixel circuit disposed ion the second area and configured to drive the first light emitting element. A second pixel is disposed in the second area. A third pixel disposed in the third area. A pixel defining pattern is disposed on the first pixel electrode and has a ring shape when viewed in a plane (e.g., in a plan view).
Abstract:
A display apparatus that prevents visual recognition of flickering in each of display areas having different resolutions includes a first pixel circuit, a first display element, a second pixel circuit, and a second display element. The first pixel circuit includes: a first driving transistor configured to control a first current that flows to the first display element; and a first initializing transistor configured to apply a first initializing voltage to a gate of the first driving transistor in response to a first scan signal. The second pixel circuit includes: a second driving transistor configured to control a second current that flows to the second display element; and a second initializing transistor configured to apply a second initializing voltage having a level different from a level of the first initializing voltage to a gate of the second driving transistor in response to the first scan signal.
Abstract:
A display apparatus includes a pixel electrode, a pixel definition layer disposed over the pixel electrode and including a first opening exposing a center portion of the pixel electrode, a bank layer disposed over the pixel definition layer and including a second opening exposing the center portion of the pixel electrode, a first pixel protection layer and a second pixel protection layer arranged between the pixel definition layer and the bank layer, an intermediate layer disposed over the pixel electrode, an opposite electrode disposed over the intermediate layer, and an encapsulation layer disposed over the bank layer and the opposite electrode.
Abstract:
A display apparatus including a substrate, a first sub-pixel electrode disposed over the substrate, a metal bank layer overlapping the first sub-pixel electrode, an inorganic bank layer disposed on the first sub-pixel electrode and disposed under the metal bank layer, and an auxiliary electrode overlapping the metal bank layer in the non-sub-pixel area, wherein a bottom surface of the inorganic bank layer is in contact with the auxiliary electrode through a first contact hole.