Abstract:
A display apparatus includes a display area and a non-display area around the display area. A substrate includes a plurality of pixels. Each pixel includes a first area through which light is emitted and a second area through which external light is transmitted. The plurality of pixels is arranged in a matrix in the display area. The substrate includes a transmission area, through which external light is transmitted, in the non-display area. An encapsulation thin film seals the substrate.
Abstract:
A display apparatus includes a display area and a non-display area around the display area. A substrate includes a plurality of pixels. Each pixel includes a first area through which light is emitted and a second area through which external light is transmitted. The plurality of pixels is arranged in a matrix in the display area. The substrate includes a transmission area, through which external light is transmitted, in the non-display area. An encapsulation thin film seals the substrate.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the display includes a stretchable substrate, a thin film transistor (TFT) formed over the stretchable substrate and including a plurality of electrodes, an OLED electrically connected to the TFT and including a plurality of electrodes, and a plurality of interconnection lines connected to the electrodes of the OLED and the TFT. At least one of the interconnection lines is configured to move in a stretching direction and rotate an electrode selected from the electrodes of the OLED and the TFT connected to the at least one interconnection line.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the display includes a stretchable substrate, a thin film transistor (TFT) formed over the stretchable substrate and including a plurality of electrodes, an OLED electrically connected to the TFT and including a plurality of electrodes, and a plurality of interconnection lines connected to the electrodes of the OLED and the TFT. At least one of the interconnection lines is configured to move in a stretching direction and rotate an electrode selected from the electrodes of the OLED and the TFT connected to the at least one interconnection line.
Abstract:
A thin film transistor substrate and a display apparatus including the same are provided. The thin film transistor substrate includes a plurality of pixels each including: a first transistor for receiving a data signal in response to a first gate control signal; a second transistor for outputting a driving current according to the data signal applied to a gate electrode of the second transistor; and a third transistor for initializing a gate node connected to the gate electrode of the second transistor in response to a second gate control signal, wherein first electrodes of the third transistors of at least some adjacent pixels of the plurality of pixels are connected to the gate node, and second electrodes thereof are connected to a shared transistor that applies an initialization voltage to the second electrodes.
Abstract:
A pixel of a display device includes a first transistor including a top gate coupled to a first node, a first terminal, a second terminal coupled to a second node, and a bottom gate, a second transistor including a gate coupled to a writing signal line, a first terminal coupled to a data line, and a second terminal coupled to the first node, a storage capacitor coupled between the first node and the second node, a light emitting element coupled between the second node and a second power supply voltage line, and a seventh transistor including a gate coupled to an initialization signal line, a first terminal coupled to a bias voltage line, and a second terminal coupled to the bottom gate.
Abstract:
A display apparatus includes a substrate; a plurality of display units on the substrate, each including a thin film transistor including at least one inorganic layer, a passivation layer on the thin film transistor, and a display device electrically connected to the thin film transistor; and a plurality of encapsulation layers respectively encapsulating the plurality of display units. The substrate includes a plurality of islands spaced apart, a plurality of connection units connecting the plurality of islands, and a plurality of through holes penetrating through the substrate between the plurality of connection units. The plurality of display units are on the plurality of islands, respectively. The at least one inorganic layer and the passivation layer extend on the plurality of connection units. The passivation layer includes a trench exposing the at least one inorganic layer. The encapsulation layer contacts the at least one inorganic layer exposed via the trench.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the display includes a stretchable substrate, a thin film transistor (TFT) formed over the stretchable substrate and including a plurality of electrodes, an OLED electrically connected to the TFT and including a plurality of electrodes, and a plurality of interconnection lines connected to the electrodes of the OLED and the TFT. At least one of the interconnection lines is configured to move in a stretching direction and rotate an electrode selected from the electrodes of the OLED and the TFT connected to the at least one interconnection line.
Abstract:
A pixel circuit includes: a light emitting element; a driving transistor to generate a driving current; a write transistor including a control electrode to receive a write gate signal, a first electrode to receive a data voltage, and a second electrode connected to a first electrode of a storage capacitor; a first compensation transistor including a control electrode to receive a compensation gate signal, a first electrode connected to a control electrode of the driving transistor, and a second electrode connected to a first electrode of the driving transistor; the storage capacitor including the first electrode connected to the second electrode of the write transistor, and a second electrode connected to the control electrode of the driving transistor; and a test transistor including a control electrode, a first electrode to receive the data voltage, and a second electrode connected to a second electrode of the driving transistor.
Abstract:
A display apparatus includes a data line, a first voltage line extending in parallel to the data line, a scan line extending in a direction perpendicular to the data line, a second voltage line extending in parallel to the scan line, and a line extending in parallel to the data line or the scan line. A portion of the line parallel to the scan line overlaps the second voltage line.