Abstract:
An electrolyte for a lithium battery, the electrolyte including a compound represented by Formula 1; a nonaqueous organic solvent; and a lithium salt. wherein, in Formula 1, X, Ya, Z, R1, and R2 are as defined.
Abstract:
Provided are methods of fabricating a semiconductor device and semiconductor devices fabricated thereby. In the methods, dummy recess regions may be formed between cell recess regions and a peripheral circuit region. Due to the presence of the dummy recess regions, it may be possible to reduce a concentration gradient of a suppressor contained in a plating solution near the dummy pattern region, to make the concentration of the suppressor more uniform in the cell pattern region, and to supply an electric current more effectively to the cell pattern region. As a result, a plating layer can be more uniformly formed in the cell pattern region, without void formation therein.
Abstract:
A sensor includes first and second electrodes, and an infrared photoelectric conversion layer between the first and second electrodes, the infrared photoelectric conversion layer being configured to absorb light in at least a portion of an infrared wavelength spectrum and convert the absorbed light to an electrical signal. The infrared photoelectric conversion layer includes a first material having a maximum absorption wavelength in an infrared wavelength spectrum, a second material forming a pn junction with the first material, and a third material having an energy band gap greater than the energy band gap of the first material by greater than or equal to about 1.0 eV. The first material, the second material, and the third material are different from each other, and each of the first material, the second material, and the third material is a non-polymeric material.
Abstract:
A compound is represented by Chemical Formula 1. The compound may be included in, a film, an infrared sensor, a combination sensor, and/or an electronic device. In Chemical Formula 1, X, Y1, Y2, Z1, Z2, Q, R1, and R2 are the same as described in the detailed description.
Abstract:
A lithium battery including: a cathode; an anode; and an electrolyte between the cathode and the anode, wherein the cathode includes a cathode active material represented by Formula 1, LixNiyM1−yO2-zAz Formula 1 wherein 0.95≤x≤1.2, 0.75≤y≤0.98, and 0≤z
Abstract:
A lithium secondary battery includes a positive electrode; a negative electrode; and an electrolyte disposed between the positive electrode and the negative electrode, wherein the positive electrode includes a positive active material represented by Formula 1, and the electrolyte includes a lithium salt; a non-aqueous solvent; and a phosphite compound represented by Formula 2, wherein the phosphite compound is present in amount of about 0.1 wt % to about 5 wt % based on a total weight of the electrolyte: LixNiyM1-yO2-zAz Formula 1 wherein, in Formula 1, 0.9≤x≤1.2, 0.7≤y≤0.98, and 0≤z
Abstract:
Methods of manufacturing a semiconductor device include forming a conductive layer on a substrate, forming an air gap or other cavity between the conductive layer and the substrate, and patterning the conductive layer to expose the air gap. The methods may further include forming conductive pillars between the substrate and the conductive layer. The air gap may be positioned between the conductive pillars.
Abstract:
A nonaqueous electrolyte for a lithium secondary battery, the nonaqueous electrolyte including: a fluorine-containing lithium salt, an organic solvent, and an organosilicon compound represented by Formula 1: wherein, in Formula 1, R1 to R3 may be each independently a C1-C10 alkyl group. Also a lithium secondary battery including the nonaqueous electrolyte.
Abstract:
A lithium secondary battery includes: a positive electrode; a negative electrode; and an electrolyte between the positive electrode and the negative electrode, wherein the positive electrode includes a positive active material represented by Formula 1, and the electrolyte includes a lithium salt, a non-aqueous solvent, and a sulfone compound represented by Formula 2. wherein, in Formula 1, 0.9≤x≤1.2, 0.7≤y≤0.98, 0≤z
Abstract:
A lithium secondary battery includes a positive electrode; a negative electrode; and an electrolyte disposed between the positive electrode and the negative electrode, wherein the positive electrode includes a positive active material represented by Formula 1, and the electrolyte includes a lithium salt; a non-aqueous solvent; and a phosphite compound represented by Formula 2, wherein the phosphite compound is present in amount of about 0.1 wt % to about 5 wt % based on a total weight of the electrolyte: LixNiyM1-yO2-zAz Formula 1 wherein, in Formula 1, 0.9≦x≦1.2, 0.7≦y≦0.98, and 0≦z