Abstract:
A method of manufacturing a light emitting device package is provided. The method includes preparing a film strip including one or more light blocking regions and one or more wavelength conversion regions, preparing light emitting devices, each including one or more light emitting regions, bonding the film strip to the light emitting devices so as to dispose the one or more wavelength conversion regions on the one or more light emitting regions of each of the light emitting devices, and cutting the film strip and the light emitting devices into individual device units.
Abstract:
A semiconductor light emitting device includes: a light emitting structure including a first conductivity-type semiconductor layer and a second conductivity-type semiconductor layer respectively providing a first surface and a second surface, opposite to each other, of the light emitting structure, and an active layer interposed between the first conductivity-type semiconductor layer and the second conductivity-type semiconductor layer, a region of the first conductivity-type semiconductor layer being open toward the second surface, and the first surface having a concavo-convex portion disposed thereon; a first electrode and a second electrode disposed on the region of the first conductivity-type semiconductor layer and a region of the second conductivity-type semiconductor layer, respectively; a transparent support substrate disposed on the first surface of the light emitting structure; and a transparent adhesive layer disposed between the first surface of the light emitting structure and the transparent support substrate.
Abstract:
A semiconductor light emitting device includes a substrate; a base layer made of a first conductivity-type semiconductor and disposed on the substrate; a plurality of nanoscale light emitting units disposed in a region of an upper surface of the base layer and including a first conductivity-type nano-semiconductor layer protruding from the upper surface of the base layer, a nano-active layer disposed on the first conductivity-type nano-semiconductor layer, and a second conductivity-type nano-semiconductor layer disposed on the nano-active layer; and a light emitting laminate disposed in a different region of the upper surface of the base layer and having a laminated active layer.
Abstract:
A method of manufacturing a nanostructure semiconductor light emitting device including providing a base layer formed of a first conductivity type semiconductor. A mask including an etch stop layer is formed on the base layer. A plurality of openings are formed in the mask so as to expose regions of. A plurality of nanocores are formed by growing the first conductivity type semiconductor on the exposed regions of the base layer to fill the plurality of openings. The mask is partially removed by using the etch stop layer to expose side portions of the plurality of nanocores. An active layer and a second conductivity type semiconductor layer are sequentially grown on surfaces of the plurality of nanocores.
Abstract:
A semiconductor light emitting device includes a substrate; a base layer made of a first conductivity-type semiconductor and disposed on the substrate; a plurality of nanoscale light emitting units disposed in a region of an upper surface of the base layer and including a first conductivity-type nano-semiconductor layer protruding from the upper surface of the base layer, a nano-active layer disposed on the first conductivity-type nano-semiconductor layer, and a second conductivity-type nano-semiconductor layer disposed on the nano-active layer; and a light emitting laminate disposed in a different region of the upper surface of the base layer and having a laminated active layer.
Abstract:
A nano-structure semiconductor light emitting device includes a base layer formed of a first conductivity type semiconductor, and a first insulating layer disposed on the base layer and having a plurality of first openings exposing partial regions of the base layer. A plurality of nanocores is disposed in the exposed regions of the base layer and formed of the first conductivity-type semiconductor. An active layer is disposed on surfaces of the plurality of nanocores and positioned above the first insulating layer. A second insulating layer is disposed on the first insulating layer and has a plurality of second openings surrounding the plurality of nanocores and the active layer disposed on the surfaces of the plurality of nanocores. A second conductivity-type semiconductor layer is disposed on the surface of the active layer positioned to be above the second insulating layer.