Abstract:
A boost converter and a cell applicable to the boost converter are provided. The cell comprises a control circuit configured to generate a bottom control signal related to a bottom plate of a capacitor, and a top control signal related to a top plate of the capacitor to connect the capacitor based on one or more operational phases, and a booster configured to convert the top control signal generated by the control circuit, wherein the capacitor is configured to be sequentially connected to voltage levels through switches, based on the bottom control signal and the converted top control signal.
Abstract:
Disclosed is a near-field communication (NFC) system that includes an NFC supporting apparatus. The NFC supporting apparatus includes a dual coil and a first switch. The dual coil includes an NFC band coil and a radio frequency (RF) band coil. An RF amplitude modulation signal is generated at the RF band coil in response to a transmission from an implantable device. The first switch is configured to switch the NFC band coil based on the RF amplitude modulation signal. The NFC band coil is configured to generate an NFC amplitude modulation signal at an NFC band coil of an NFC reader in response to the first switch.
Abstract:
A single-inductor multiple-output (SIMO) converter includes a converter configured to provide respective voltages of a plurality of channels with a single inductor and a control logic configured to control switches of the converter based on clocks corresponding to the plurality of channels, wherein the control logic is configured to compare an output voltage of a selected channel of the plurality of channels that corresponds to a control target to a reference voltage of the selected channel based on a clock of the selected channel and operate in one of a first mode that adaptively adjusts a number of times that a pulse triggering a power transfer to the channel is generated, and a second mode that blocks a generation of the pulse.
Abstract:
Disclosed are a medical device apparatus, system, and method. A method includes receiving biometric information, by an external device external to a body of a user, of the user from an internal device within the body of the user, and wirelessly transmitting stimulus information configured to specify a stimulus based on the biometric information, and power to the internal device configured to drive the internal device and to apply the stimulus in response to the transmitted stimulus information. A method also includes wirelessly transmitting, from an internal device in a body of a user, biometric information of the user to an external device located outside the body of the user, and wirelessly receiving from the external device stimulus information configured to specify a stimulus, and power configured to drive the internal device and to apply the stimulus to the user in response to the received stimulus information.
Abstract:
A wearable device and corresponding method include producing, at a wearable device, an incoming call processing option list in response to a rejection input from a user rejecting an incoming call from a mobile terminal. The wearable device and corresponding method further transmit, from the wearable device to the mobile terminal, a result value corresponding to a gesture of the user and in response to the incoming call processing option list.
Abstract:
A device, a method, and a system recognize a motion using a gripped object. The motion recognition device may estimate a state of a wrist of a user according to a writing action using the gripped object and may estimate a joint motion of a body part related to the wrist according to the writing action. The device may then estimate a state of the gripped object according to the state of the wrist and the joint motion. Additionally, the motion recognition device may control an external device by using a control signal generated by continuously tracking the state of the object.
Abstract:
A wireless power transmission system and method thereof are provided. A power transmission apparatus includes a processor configured to classify reception (RX) nodes into a subset, and to determine a transmission schedule based on the subset; and a transmission (TX) resonator configured to wirelessly transmit energy to an RX node corresponding to the subset, based on the transmission schedule.
Abstract:
A method and apparatus are configured to recognize mobile terminals positioned within a coverage area for short range communication with a user-specific device, wherein each mobile terminal comprises identification information for the user-specific device. The method and the apparatus provide a customized service corresponding to at least one of the mobile terminals.
Abstract:
A wearable device and corresponding method include producing, at a wearable device, an incoming call processing option list in response to a rejection input from a user rejecting an incoming call from a mobile terminal. The wearable device and corresponding method further transmit, from the wearable device to the mobile terminal, a result value corresponding to a gesture of the user and in response to the incoming call processing option list.
Abstract:
A wireless power transmission apparatus includes a resonator configured to transmit power through a resonance with another resonator, a switch configured to connect the resonator to a power source, a setting unit configured to set a target amount of current to flow in the resonator, and a control unit configured to control the switch based on the target amount of current.