Abstract:
Systems and methods for focusing ultrasound through the skull into the brain for diagnostic or therapeutic purposes may be improved by utilizing both longitudinal and shear waves. The relative contribution of the two modes may be determined based on the angle of incidence.
Abstract:
MRI interference with a co-existing treatment system may be reduced or avoided by carrying out RF-sensitive operations of the treatment system only when gradient field activity of the MRI system is suppressed.
Abstract:
A system for focusing ultrasonic energy through intervening tissue into a target site within a tissue region includes a transducer array including transducer element, an imager for imaging the tissue region, a processor receiving images from the imager to determine boundaries between different tissue types within the intervening tissue and generate correction factors for the transducer elements to compensate for refraction occurring at the boundaries between the tissue types and/or for variations in speed of sound. A controller is coupled to the processor and the transducer array to receive the correction factors and provide excitation signals to the transducer elements based upon the correction factors. The correction factors may include phase and/or amplitude correction factors, and the phases and/or amplitudes of excitation signals provided to the transducer elements may be adjusted based upon the phase correction factors to focus the ultrasonic energy to treat tissue at the target site.
Abstract:
An asymmetric ultrasound transducer array may include multiple regions or groups of transducer elements. The regions may be configured to generate respective ultrasound beams with different capabilities, such as, e.g., focusing at varying focal depths and lateral steering, and/or focusing into different volumes.
Abstract:
Systems and methods for focusing ultrasound through the skull into the brain for diagnostic or therapeutic purposes may be improved by utilizing both longitudinal and shear waves. The relative contribution of the two modes may be determined based on the angle of incidence.
Abstract:
The emission intensities of groupings of transducer elements of an ultrasound transducer array are controlled based on targeting criteria in such a manner as to simultaneously create multiple discontiguous foci, each corresponding to one of a plurality of target sites.
Abstract:
A method for treating body tissue using acoustic energy includes identifying a target focal zone of tissue to be treated, delivering a first pulse of acoustic energy from a transducer to generate bubbles in a tissue region located distally, relative to the transducer, of a focal center of the target focal zone, and delivering a second pulse of acoustic energy from the transducer in the presence of the bubbles generated by the first pulse, the second pulse focused at the focal center to generate thermal ablation energy. In a further embodiment, a method of treating body tissue using ultrasound energy includes identifying a target focal zone to be treated and delivering a plurality of pulses of acoustic ablation energy to locations distributed symmetrically in or proximate a focal plane about the focal center of the target focal zone.
Abstract:
A focused ultrasound system includes an ultrasound transducer device forming an opening, and having a plurality of transducer elements positioned at least partially around the opening. A focused ultrasound system includes a structure having a first end for allowing an object to be inserted and a second end for allowing the object to exit, and a plurality of transducer elements coupled to the structure, the transducer elements located relative to each other in a formation that at least partially define an opening, wherein the transducer elements are configured to emit acoustic energy that converges at a focal zone.
Abstract:
A method of treating tissue within a body includes directing an ultrasound transducer having a plurality of transducer elements towards target body tissue, and delivering ultrasound energy towards the target tissue from the transducer elements such that an energy intensity at the target tissue is at or above a prescribed treatment level, while an energy intensity at tissue to be protected in the ultrasound energy path of the transducer elements is at or below a prescribed safety level.