Abstract:
An apparatus comprises an RF receiver for receiving an RF signal. The RF receiver includes front-end circuitry to generate a first down-converted signal, and a plurality of signal detectors to generate a corresponding plurality of detection signals from signals derived from the down-converted signal. The RF receiver further includes a controller to provide at least one control signal to the front-end circuitry based on the plurality of detection signals.
Abstract:
A method for communicating between a first radio frequency communications device including a first local oscillator and a second radio frequency communications device including a second local oscillator includes receiving a packet using a receiver of the first radio frequency communications device. The method includes detecting an average frequency offset based on sequential samples of the packet. The method includes applying a first adjustment to the first local oscillator to reduce a frequency offset between the first local oscillator and the second local oscillator. The first adjustment is based on the average frequency offset. The method includes, after adjusting the first local oscillator, transmitting a second packet to the second radio frequency communications device by the first radio frequency communications device using the first adjustment and the first local oscillator.
Abstract:
A method for operating a radio frequency communications system includes, while operating a first radio frequency communications device in a calibration mode, for each setting of a plurality of settings of a programmable gain amplifier in a receiver of the first radio frequency communications device configured in a zero-intermediate frequency mode of operation, generating an estimate of a DC offset in each of a plurality of digital samples received from an analog circuit path including the programmable gain amplifier, and storing in a corresponding storage element, a compensation value based on the estimate.
Abstract:
A receiver includes a phase click detector, a controller, and a comparator. The phase click detector detects phase clicks in an input signal, where a phase click corresponds to a change in phase of at least a first threshold. The controller is coupled to the phase click detector for calculating a number of phase clicks within one or more time periods. The comparator compares the number of phase clicks within the one or more time periods, and provides an arrival signal if the number of phase clicks is less than a second threshold.
Abstract:
In at least one embodiment, a method for measuring a distance between a first communications device including a first local oscillator and a second communications device including a second local oscillator includes unwrapping N phase values to generate N unwrapped phase values. N is an integer greater than one. Each of the N phase values indicate an instantaneous phase of a received signal. The method includes averaging the N unwrapped phase values to generate an average phase value. The method includes wrapping the average phase value to generate a final phase measurement of the first local oscillator with respect to the second local oscillator.
Abstract:
A method for communicating between a first radio frequency communications device including a first local oscillator and a second radio frequency communications device including a second local oscillator includes generating phase values based on samples of a received signal. Each of the phase values indicates an instantaneous phase of the received signal. The method includes unwrapping the phase values to generate unwrapped phase values. The method includes generating frequency offset estimates based on the unwrapped phase values. The method includes generating an average frequency offset estimate based on the unwrapped phase values. The method includes wrapping the average frequency offset estimate to generate a residual frequency offset estimate. The method includes adjusting the first local oscillator based on the residual frequency offset estimate, thereby reducing a frequency offset between the first local oscillator and the second local oscillator.
Abstract:
In one example, a receiver includes: a low noise amplifier (LNA) to receive and amplify a radio frequency (RF) signal, the LNA having a first controllable gain; a mixer to downconvert the RF signal to an intermediate frequency (IF) signal; a programmable gain amplifier (PGA) coupled to the mixer to amplify the IF signal, the PGA having a second controllable gain; a digitizer to digitize the IF signal to a digitized signal; a digital signal processor (DSP) to process the digitized signal; a first detector to output a first detection signal having a first value in response to the IF signal exceeding a first threshold during a first detection period; and a controller to dynamically update a gain setting of one or more of the LNA and the PGA in response to the first detection signal.
Abstract:
An apparatus includes a radio frequency (RF) receiver to receive packets. The RF receiver includes first and second synchronization field detectors (SFDs). The first and second SFDs detect synchronization headers generated using first and second physical layer (PHY) modes, respectively.
Abstract:
An apparatus includes a radio frequency (RF) receiver having a multi-bit observation interval. The RF receiver includes a Coordinate Rotation Digital Computer (Cordic) circuit to receive a complex signal derived from RF signals and to generate a phase signal. The RF receiver further includes a timing correlator and frequency offset estimator coupled to receive data derived from a frequency signal derived from the phase signal. The RF receiver in addition includes a Viterbi decoder coupled to provide decoded data derived from the frequency signal.
Abstract:
A receiver includes first, second, and third signal processors and a controller. The first signal processor provides a first signal in response to detecting a first attribute of a received signal. The second signal processor provides a second signal in response to detecting a second attribute of the received signal. The third signal processor provides a third signal in response to detecting a third attribute of the received signal and provides packet data. The controller enables the first signal processor in response to a receive enable signal, controls the third signal processor to provide the packet data in response to receiving the first signal and the third signal, and initializes the first signal processor and the third signal processor in response to receiving the first signal and the second signal.