Abstract:
A FCBGA (flip-chip ball grid array) semiconductor package with a heat-dissipating device and a method for fabricating the same are provided. At least a chip is mounted on a substrate in a flip-chip manner, and connected to a heat-dissipating device that is composed of a heat sink and a plurality of thermally conductive bumps implanted on the beat sink. Heat produced from the chip is dissipated via the heat-dissipating device. The thermally conductive bumps are bonded to a circuit board, and thereby reduce contact area between the heat-dissipating device and the circuit board, without forming of voids or popcorn effect during a solder-reflow process. The heat sink in contact with the chip is similar in coefficient of thermal expansion (CTE) to the chip, so as to prevent delamination between the heat sink and the chip, thereby assuring quality and yield of fabricated package products.
Abstract:
A method and a system of wire bonding for use in semiconductor package fabrication are proposed. When one wire-bonded substrate unit of a substrate mounted with chips is introduced into a testing region, a next adjacent substrate unit is simultaneously formed with bonding wires in a wire-bonding region. In the testing region, the wire-bonded substrate unit is tested for wire bonding quality. If no wire opening or short occurs, the wire-bonded substrate unit is readily used for subsequent package fabrication. If wire opening or short is detected, a controlling module associated with the testing region generates a control signal to the wire-bonding region for interrupting a wire-bonding process, whereby causes of wire opening or short are overcome, and defective bonding wires are reworked. Therefore, inferiors or malfunction is timely detected, making overall fabrication process more time-effectively implemented; and inferiors are reworked for later usage, thereby significantly reducing fabrication costs.
Abstract:
A flip chip semiconductor package is proposed, in which a dam structure is formed of an adhesive compound such as epoxy resin on a substrate around a chip. The adhesive compound has a larger coefficient of thermal expansion than that of the substrate, and generates a greater thermal contraction force for counteracting thermal stress of the substrate in a cooling process in fabrication, so as to maintain planarity and structural intactness of the substrate and chip. Moreover, the chip can be made in a manner as to expose a non-active surface thereof to the atmosphere for facilitating dissipation of heat generated by the chip, while a heat sink can be additionally disposed on the chip, so as to further improve heat dissipating efficiency of the semiconductor package.
Abstract:
A lead-on-chip (LOC) type of semiconductor package is proposed, which is characterized by the provision of an embedded heat sink in the encapsulation body and thermally coupled to the packaged semiconductor chip. The proposed semiconductor package is constructed on a leadframe including an outer-lead portion, an inner-lead portion, and a downset bond-finger portion. During packaging process, a semiconductor chip is arranged on the back side of the inner-lead portion of the leadframe and whose active surface is attached to the downset bond-finger portion of the leadframe; then, a plurality of bonding wires are bonded between the respective I/O pads of the semiconductor chip and the downset bond-finger portion of the leadframe. Further, a heat sink is adhered to the front side of the inner-lead portion of the leadframe by means of an electrically-insulative and thermally-conductive adhesive material. Finally, an encapsulation body is formed to encapsulate the semiconductor chip, the inner-lead portion of the leadframe, the bonding wires, and the heat sink. Owing to the embedded heat sink configuration, it allows the packaged semiconductor chip to have good heat-dissipation efficiency during operation and also allows the overall package body to be made very compact in size.
Abstract:
A semiconductor package with a flash-proof device is proposed, in which at least one chip and at least one passive device mounted on a substrate are covered by a flash-proof device dimensionally designed for positioning the substrate in a conventional mold and preventing a molding resin from flashing on the substrate in a molding process, and thus quality of the fabricated package can be assured. Due to no need of a specifically designed mold, fabrication costs are reduced. Furthermore, the flash-proof device has its top side exposed to outside of an encapsulant formed in the molding process, thereby allowing heat dissipating efficiency to be improved. Moreover, the flash-proof device provides shielding for the chip and the passive device received therein, so that external electromagnetic interference with performance of the semiconductor package can be reduced.
Abstract:
A semiconductor package with a heat dissipating element is proposed, in which the contact area between a semiconductor chip and the heat dissipating element is significantly reduced as the chip merely has its edge portion attached to the dissipating element. This makes an effect of a thermal stress on the chip reduced so as to prevent cracking and delamination for the chip. Moreover, the chip is partially exposed to the atmosphere, which allows the efficiency of heat dissipation and moisture escapement to be improved, so as to prevent a popcorn effect from occurrence and make the semiconductor package assured in reliability and quality.
Abstract:
A flash-preventing window ball grid array semiconductor package, a method for fabricating the same, and a chip carrier used in the semiconductor package are provided. The chip carrier has a through hole and has a surface formed with a plurality of wire-bonding portions, ball-bonding portions and intended-exposing regions. A chip is mounted over the through hole and electrically connected to the wire-bonding portions by a plurality of bonding wires penetrating through the through hole. An encapsulation body encapsulates the chip and bonding wires. The intended-exposing regions serve as a narrow runner which is filled with an encapsulating material forming the encapsulation body, making the encapsulating material not flash over the ball-bonding portions. This allows a plurality of solder balls to be well bonded to the ball-bonding portions, thereby assuring the quality of electrical connection and the surface planarity of the semiconductor package.
Abstract:
A flip-ship semiconductor package with a lead frame as a chip carrier is provided, wherein a plurality of leads of the lead frame are each formed with at least a dam member thereon. When a chip is mounted on the lead frame by means of solder bumps, each of the solder bumps is attached to the corresponding one of the leads at a position between the dam member and an inner end of the lead. During a reflow-soldering process for wetting the solder bumps to the leads, the dam members would help control collapse height of the solder bumps, so as to enhance resistance of the solder bumps to thermal stress generated by CTE (coefficient of thermal expansion) mismatch between the chip and the leads, thereby preventing incomplete electrical connection between the chip and the leads.
Abstract:
A QFN semiconductor package and a fabrication method thereof are proposed, wherein a lead frame having a plurality of leads is adopted, and each lead is formed at its inner end with a protruding portion. A wire bonding region and a bump attach region are respectively defined on opposite surfaces of the protruding portion, and staggered in position. This allows a force applied from a wire bonder to the wire bonding regions not to adversely affect solder bumps implanted on the bump attach regions, so that the solder bumps can be structurally assured without cracking. Moreover, the wire bonding regions spaced apart from the bump attach regions can be prevented from being contaminated by an etching solution used in solder bump implantation, so that wire bonding quality can be well maintained.
Abstract:
A semiconductor package and a method for fabricating the same are proposed, wherein, in a molding process for encapsulating a semiconductor chip mounted on a substrate, a mold is used with a molding cavity formed with a plurality of recess portions relatively smaller in height, and with a plurality of air vents for connecting the recess portions to outside of the mold and for ventilate air in the molding cavity. This allows a molding resin used during molding to slow down its flow when flowing into the recess portions, as the molding resin rapidly absorbs heat transmitted from the mold and is increased in viscosity thereof. The slowed down molding resin can therefore be prevented from flashing out of the air vents, so that quality and appearance of the fabricated semiconductor package can be well assured.