Abstract:
An illuminating device achieves higher brightness by improving the utilization efficiency of light from a light source in an illuminating device for emitting plane-shaped light. The backlight device includes a light guide member, and LED units facing side surfaces of the light guide member, and propagates light that is emitted by the LEDs and made incident to the side surfaces in the light guide member so as to emit plane-shaped light from a first main surface of the light guide member. The backlight device includes an insulating reflective member placed outside a second main surface of the light guide member facing the first main surface, and a metal reflective sheet laminated on the insulating reflective sheet on the side opposite to the light guide member.
Abstract:
In a backlight device, two-channel LED modules including 4-light-emitting diodes connected in series and resistive elements connected in series to the respective LED module are provided. The resistor elements provide voltage drops to the corresponding LED modules, and thereby set output voltages to the respective LED modules in a predetermined voltage range.
Abstract:
A game program configured to cause a game apparatus to operate to implement as: a means that generates an image simulating a dealer and a play field; a means for determining a bet number of a particular gaming value; a means that executes a gambling type game in which a predetermined number of gaming values have been bet between the player and the dealer when input information on the bet number has been provided; a means for giving a chip to the dealer; a means that stores the chips corresponding to the dealer in association with each other, based on the input information; a means that determines a favorable-impression rank corresponding to the stored chip and controls a behavior of the dealer in response to the rank; and a means that pays back a gaming value when it is judged that the player has won in the gambling type game.
Abstract:
In a direct backlight, a substrate on which LEDs are provided includes a plurality of module substrates. Each module substrates can be reduced in warping or deformation after a blanking process. In addition, each module substrate can be formed thin since bending due to its own weight is small. Consequently, the substrate as a whole and the backlight can be formed thin.
Abstract:
A 3-aminomethyltetrahydrofuran derivative is produced by preparing a 3-cyanotetrahydrofuran derivative in a high yield from a malic acid derivative, and reducing the cyano group of the 3-cyanotetrahydrofuran derivative. The process can produce the 3-cyanotetrahydrofuran derivative in a high yield from inexpensive industrial materials.
Abstract:
A substrate processing apparatus comprises an indexer block, an anti-reflection film processing block, a resist film processing block, a development processing block, a resist cover film processing block, a resist cover film removal block, a cleaning/drying processing block, and an interface block. An exposure device is arranged adjacent to the interface block in the substrate processing apparatus. The exposure device subjects a substrate to exposure processing by means of an immersion method. In the edge cleaning unit in the cleaning/drying processing block, a blush abuts against an end of the rotating substrate, so that the edge of the substrate before the exposure processing is cleaned. At this time, the position where the substrate is cleaned is corrected.
Abstract:
A substrate processing apparatus comprises an interface block. An exposure device is arranged adjacent to the interface block. The interface block includes a placement/bake unit. A substrate that has been subjected to exposure processing in the exposure device is subjected to cleaning and drying processing in a second cleaning/drying processing unit, and is then transported to a placement/heating unit. In the placement/heating unit, the substrate is subjected to post-exposure bake processing.
Abstract:
A substrate processing apparatus comprises an indexer block, an anti-reflection film processing block, a resist film processing block, a development processing block, a resist cover film processing block, a resist cover film removal block, and an interface block. An exposure device is arranged adjacent to the interface block. The interface block includes a substrate replacement group. The substrate replacement group has a stack of three cleaning/drying processing units. The cleaning/drying processing unit subjects the substrate after exposure processing to cleaning and drying processing.
Abstract:
A lighting unit and a liquid crystal display device which can improve the efficiency of usable light. The lighting unit includes a light source, a light guide plate, and a truncated pyramid located between the light guide plate and the light source. The truncated pyramid has a base, a top smaller than the base, and a slope linking the base and the top. The light source is placed in close contact with the top of the truncated pyramid, and the light guide plate is placed in close contact with the base of the truncated pyramid. Light is propagated from a light emitting part of the light source to the light guide plate without passing through any air layer. Also, an unnecessary light removing structure is provided in the light guide plate near the incidence surface thereof.
Abstract:
When a first substrate transferred outwardly from an indexer cell is the last substrate prior to reticle change in an exposure apparatus, the outward transfer of a second substrate to be processed subsequently to the first substrate from the indexer cell is temporarily stopped. After a lapse of time corresponding to reticle replacement time, the outward substrate transfer is restarted, and the second substrate is transferred outwardly from the indexer cell. For the exposure apparatus, the second substrate subjected to a resist coating process is received at the instant when the reticle replacement is completed after the completion of the exposure process of the first substrate. This provides a constant time interval between the completion of the resist coating process of substrates and the execution of the exposure process thereof without the decrease in processing efficiency. As a result, a uniform processing history for the substrates is achieved to further improve the line width uniformity of a pattern.