Abstract:
The invention can provide a liquid crystal display device in which a homeotropic alignment liquid crystal layer is interposed between a pair of substrates and a transmissive display region and a reflective display region are provided in one dotregion. A liquid crystal layer thickness-adjusting layer for making the thickness of the liquid crystal layer in the reflective display region smaller than the thickness of the liquid crystal layer in the transmissive display region can be formed between at least one substrate of the pair of substrates and the liquid crystal layer, and wherein, in at least one substrate of the pair of substrates, convex portions that protrude from the internal surface of the substrate to the inside of the liquid crystal layer are formed in the transmissive display region in the dot region and in the region where the liquid crystal layer thickness-adjusting layer is formed outside the dot region. Accordingly, the invention can provide a liquid crystal display device capable of displaying images with a wide angle in both of transmissive display and reflective display.
Abstract:
A liquid crystal device includes a pair of substrates and a liquid crystal layer between the pair of substrates. In addition, the device includes a scattering reflective plate disposed between the liquid crystal layer and one of the pair of substrates, the scattering reflective plate having a light scattering surface, the scattering reflective plate reflecting 80% or more of impinging light into a 30° cone.
Abstract:
The invention comprises a pair of substrates having electrodes on the opposing inner surfaces and forming a matrix-patterned dot group, liquid crystals sandwiched between said substrates, at least two colors of color filters, at least one polarizing plate, and a reflective plate. Also, of said color filters, at least one color of color filters has a transmissivity of 50% or more for the light of all the wavelengths in the range of 450 nm to 660 nm.
Abstract:
The invention provides a reflection type liquid crystal device, and a projection type display and electronic equipment in which display defects caused by disclination are reduced, minimized or prevented from being produced for a highly fine liquid crystal display with a space between pixels made to be narrow to make it possible to provide a high-contrast and bright display. A liquid crystal device includes a liquid crystal layer sandwiched between a first substrate and a second substrate, and a first electrode and a second electrode formed on a face of the above-described second substrate on a side of the above-described liquid crystal layer. The above-described first electrode and the above-described second electrode are formed so that an electric field substantially parallel to the surface of the substrate with respect to the above-described liquid crystal layer can be applied thereto. The above-described first electrode is formed in a linear shape having a specified line width on the above-described second electrode with a second insulation film interposed therebetween. The above-described second electrode is formed in a rectangular shape, and at least one of the above-described first electrode and the above-described second electrode is a reflecting electrode that causes incident light coming from a direction of the above-described first substrate.
Abstract:
A light-emitting device includes a light-emitting element in which a first electrode layer, a functional layer having at least a light-emitting layer, and a second electrode layer are laminated. At least one of the first electrode layer and the second electrode layer has a light-transmissive electrode layer. A refractive material layer is provided at a side of the light-transmissive electrode layer not facing the functional layer. At a side of the refractive material layer not facing the light-transmissive electrode layer, a substrate formed with irregularities on a surface thereof abutting the refractive material layer is provided.
Abstract:
The invention provides a liquid crystal display device having a high display luminance and performs highly visibly display even in a bright outdoor environment. The invention also provides an electronic apparatus equipped with the same. A liquid crystal display device according to the present invention includes (i) a liquid crystal display panel having: a upper substrate and a lower substrate which are disposed so as to oppose each other; a liquid crystal layer sandwiched by the two substrates; an upper polarizer and a lower polarizer disposed above and below the liquid crystal layer, and (ii) a backlight (illumination device) disposed close to the rear surface of the liquid crystal display panel. The backlight includes a prism sheet which has a prism surface having a plurality of ribs, each having an approximately triangular cross-section, formed thereon close to the liquid crystal display panel, and which is arranged such that the prism surface faces in the opposite direction to the liquid crystal display panel. Also, the lower polarizer has a light diffusing layer and a reflective polarizer deposited in that order on the outer surface thereof.
Abstract:
The present invention provides a high-contrast reflective display and transmissive display with a wide viewing angle in a transflective liquid crystal display device having reflective and transmissive structures. In such a display, each of dots can contain a reflective display region for reflective display and a transmissive display region for transmissive display. A liquid crystal layer can be composed of a nematic liquid crystal aligned substantially perpendicularly to substrates and having a negative dielectric anisotropy. A first retardation film having an optically negative uniaxiality, a second retardation film having an optically positive uniaxiality, and a first polarizer are arranged in that order outside an upper substrate, and a third retardation film having an optically negative uniaxiality, a fourth retardation film having an optically positive uniaxiality, a second polarizer, and illumination means are arranged in that order outside a lower substrate.
Abstract:
To provide a liquid crystal device in which the occurrence of disclination is efficiently suppressed in a dot area, thereby allowing a bright display and the alignment control of the liquid crystal molecules can be carried out by applying low voltage, a liquid crystal device includes: an array substrate having pixel electrodes arranged in a matrix and switching elements corresponding to the respective pixel electrodes formed on a surfaces of the array substrate, a counter substrate opposing the array substrate, a liquid crystal layer including negative dielectric anisotropy liquid crystal disposed between the array substrate and the counter substrate, and stripe alignment control electrodes disposed on the liquid crystal layer facing surface of the counter substrate, each alignment control electrode extending along the boundaries of the pixel electrodes in plan view.
Abstract:
The invention provides a high-image-quality, wide-viewing-angle liquid crystal display device that can be manufactured at low cost, and to provide an electronic apparatus provided with such a liquid crystal display device. A liquid crystal display device of the invention can include an upper substrate and a lower substrate which are disposed facing each other, a liquid crystal layer interposed between the upper substrate and the lower substrate, an upper polarizer and a lower polarizer which are separated by the liquid crystal layer and are disposed adjacent to two opposite sides of the liquid crystal layer, and a liquid crystal panel having dot regions each provided with a transmissive display area and a reflective display area. One of the upper substrate and the lower substrate can be provided with a liquid-crystal-layer thickness adjustment layer on a side of the substrate adjacent to the liquid crystal layer. This liquid-crystal-layer thickness adjustment layer provides different thicknesses for the liquid crystal layer in the transmissive display area and the reflective display area. The upper substrate has a light-diffusing layer disposed adjacent to the outer surface of the upper substrate. A half-width α for the contrast-versus-viewing-angle characteristics of the liquid crystal panel and a half-width β for the diffusion characteristics of the light-diffusing layer satisfy the relationship α≧3β.
Abstract:
To ensure an aperture ratio and enhance display characteristic as viewed from a wide angle side. There is provided a liquid crystal display device having a liquid crystal interposed between a pair of substrates, in which an electric field parallel to a surface of each of the substrates is applied to the liquid crystal, thereby changing a display state. The liquid crystal display device comprises a retardation film arranged at a side opposite to the liquid crystal of one substrate of the substrates, a first polarizing plate which is arranged at a side opposite to the substrate of the retardation film and which has a transmission axis parallel to an alignment direction of the liquid crystal, and a second polarizing plate which is arranged at a side opposite to the liquid crystal of the other substrate and which has a transmission axis orthogonal to the alignment direction of the liquid crystal.