-
公开(公告)号:US20200348678A1
公开(公告)日:2020-11-05
申请号:US16929954
申请日:2020-07-15
Applicant: TUSIMPLE, INC.
Inventor: Xing Sun , Wutu Lin , Liu Liu , Kai-Chieh Ma , Zijie Xuan , Yufei Zhao
Abstract: A system and method for real world autonomous vehicle trajectory simulation may include: receiving training data from a data collection system; obtaining ground truth data corresponding to the training data; performing a training phase to train a plurality of trajectory prediction models; and performing a simulation or operational phase to generate a vicinal scenario for each simulated vehicle in an iteration of a simulation. Vicinal scenarios may correspond to different locations, traffic patterns, or environmental conditions being simulated. Vehicle intention data corresponding to a data representation of various types of simulated vehicle or driver intentions.
-
公开(公告)号:US10782693B2
公开(公告)日:2020-09-22
申请号:US15805983
申请日:2017-11-07
Applicant: TuSimple, Inc.
Inventor: Xiaomin Zhang , Yilun Chen , Guangyu Li , Xing Sun , Wutu Lin , Liu Liu , Kai-Chieh Ma , Zijie Xuan , Yufei Zhao
Abstract: A prediction-based system and method for trajectory planning of autonomous vehicles are disclosed. A particular embodiment is configured to: receive training data and ground truth data from a training data collection system, the training data including perception data and context data corresponding to human driving behaviors; perform a training phase for training a trajectory prediction module using the training data; receive perception data associated with a host vehicle; and perform an operational phase for extracting host vehicle feature data and proximate vehicle context data from the perception data, using the trained trajectory prediction module to generate predicted trajectories for each of one or more proximate vehicles near the host vehicle, generating a proposed trajectory for the host vehicle, determining if the proposed trajectory for the host vehicle will conflict with any of the predicted trajectories of the proximate vehicles, and modifying the proposed trajectory for the host vehicle until conflicts are eliminated.
-
公开(公告)号:US10768626B2
公开(公告)日:2020-09-08
申请号:US15721781
申请日:2017-09-30
Applicant: TuSimple, Inc.
Inventor: Xing Sun , Yufei Zhao , Wutu Lin , Zijie Xuan , Liu Liu , Kai-Chieh Ma
Abstract: A system and method for providing multiple agents for decision making, trajectory planning, and control for autonomous vehicles are disclosed. A particular embodiment includes: partitioning a multiple agent autonomous vehicle control module for an autonomous vehicle into a plurality of subsystem agents, the plurality of subsystem agents including a deep computing vehicle control subsystem and a fast response vehicle control subsystem; receiving a task request from a vehicle subsystem; dispatching the task request to the deep computing vehicle control subsystem or the fast response vehicle control subsystem based on content of the task request or a context of the autonomous vehicle; causing execution of the deep computing vehicle control subsystem or the fast response vehicle control subsystem by use of a data processor to produce a vehicle control output; and providing the vehicle control output to a vehicle control subsystem of the autonomous vehicle.
-
24.
公开(公告)号:US20200241546A1
公开(公告)日:2020-07-30
申请号:US16848809
申请日:2020-04-14
Applicant: TUSIMPLE, INC.
Inventor: Xing SUN , Wutu Lin , Liu Liu , Kai-Chieh Ma , Zijie Xuan , Yufei Zhao
Abstract: A data-driven prediction-based system and method for trajectory planning of autonomous vehicles are disclosed. A particular embodiment includes: generating a first suggested trajectory for an autonomous vehicle; generating predicted resulting trajectories of proximate agents using a prediction module; scoring the first suggested trajectory based on the predicted resulting trajectories of the proximate agents; generating a second suggested trajectory for the autonomous vehicle and generating corresponding predicted resulting trajectories of proximate agents, if the score of the first suggested trajectory is below a minimum acceptable threshold; and outputting a suggested trajectory for the autonomous vehicle wherein the score corresponding to the suggested trajectory is at or above the minimum acceptable threshold.
-
25.
公开(公告)号:US10649458B2
公开(公告)日:2020-05-12
申请号:US15698607
申请日:2017-09-07
Applicant: TuSimple, Inc.
Inventor: Xing Sun , Wutu Lin , Liu Liu , Kai-Chieh Ma , Zijie Xuan , Yufei Zhao
Abstract: A data-driven prediction-based system and method for trajectory planning of autonomous vehicles are disclosed. A particular embodiment includes: generating a first suggested trajectory for an autonomous vehicle; generating predicted resulting trajectories of proximate agents using a prediction module; scoring the first suggested trajectory based on the predicted resulting trajectories of the proximate agents; generating a second suggested trajectory for the autonomous vehicle and generating corresponding predicted resulting trajectories of proximate agents, if the score of the first suggested trajectory is below a minimum acceptable threshold; and outputting a suggested trajectory for the autonomous vehicle wherein the score corresponding to the suggested trajectory is at or above the minimum acceptable threshold.
-
公开(公告)号:US12242271B2
公开(公告)日:2025-03-04
申请号:US17983974
申请日:2022-11-09
Applicant: TuSimple, Inc.
Inventor: Xing Sun , Yufei Zhao , Wutu Lin , Zijie Xuan , Liu Liu , Kai-Chieh Ma
Abstract: A system and method for providing multiple agents for decision making, trajectory planning, and control for autonomous vehicles are disclosed. A particular embodiment includes: partitioning a multiple agent autonomous vehicle control module for an autonomous vehicle into a plurality of subsystem agents, the plurality of subsystem agents including a deep computing vehicle control subsystem and a fast response vehicle control subsystem; receiving a task request from a vehicle subsystem; determining if the task request is appropriate for the deep computing vehicle control subsystem or the fast response vehicle control subsystem based on content of the task request or a context of the autonomous vehicle; dispatching the task request to the deep computing vehicle control subsystem or the fast response vehicle control subsystem based on the determination; causing execution of the deep computing vehicle control subsystem or the fast response vehicle control subsystem by use of a data processor to produce a vehicle control output; and providing the vehicle control output to a vehicle control subsystem of the autonomous vehicle.
-
公开(公告)号:US11892846B2
公开(公告)日:2024-02-06
申请号:US17006345
申请日:2020-08-28
Applicant: TuSimple, Inc.
Inventor: Xiaomin Zhang , Yilun Chen , Guangyu Li , Xing Sun , Wutu Lin , Liu Liu , Kai-Chieh Ma , Zijie Xuan , Yufei Zhao
CPC classification number: G05D1/0212 , G05D1/0088 , G08G1/161 , G08G1/166 , G08G1/167 , G05D2201/0213
Abstract: A prediction-based system and method for trajectory planning of autonomous vehicles are disclosed. A particular embodiment is configured to: receive training data and ground truth data from a training data collection system, the training data including perception data and context data corresponding to human driving behaviors; perform a training phase for training a trajectory prediction module using the training data; receive perception data associated with a host vehicle; and perform an operational phase for extracting host vehicle feature data and proximate vehicle context data from the perception data, generating a proposed trajectory for the host vehicle, using the trained trajectory prediction module to generate predicted trajectories for each of one or more proximate vehicles near the host vehicle based on the proposed host vehicle trajectory, determining if the proposed trajectory for the host vehicle will conflict with any of the predicted trajectories of the proximate vehicles, and modifying the proposed trajectory for the host vehicle until conflicts are eliminated.
-
公开(公告)号:US11500387B2
公开(公告)日:2022-11-15
申请号:US16991599
申请日:2020-08-12
Applicant: TUSIMPLE, INC.
Inventor: Xing Sun , Yufei Zhao , Wutu Lin , Zijie Xuan , Liu Liu , Kai-Chieh Ma
Abstract: A system and method for providing multiple agents for decision making, trajectory planning, and control for autonomous vehicles are disclosed. A particular embodiment includes: partitioning a multiple agent autonomous vehicle control module for an autonomous vehicle into a plurality of subsystem agents, the plurality of subsystem agents including a deep computing vehicle control subsystem and a fast response vehicle control subsystem; receiving a task request from a vehicle subsystem; dispatching the task request to the deep computing vehicle control subsystem or the fast response vehicle control subsystem based on the content of the task request or a context of the autonomous vehicle; causing execution of the deep computing vehicle control subsystem or the fast response vehicle control subsystem by use of a data processor to produce a vehicle control output; and providing the vehicle control output to a vehicle control subsystem of the autonomous vehicle.
-
公开(公告)号:US20220291687A1
公开(公告)日:2022-09-15
申请号:US17805219
申请日:2022-06-02
Applicant: TuSimple, Inc.
Inventor: Aaron Havens , Jun Chen , Yujia Wu , Haoming Sun , Zijie Xuan , Arda Kurt
IPC: G05D1/00 , G06F17/11 , G05B19/4155 , G05D1/02
Abstract: Systems and methods for dynamic predictive control of autonomous vehicles are disclosed. In one aspect, an in-vehicle control system for a semi-truck includes one or more control mechanisms configured to control movement of the semi-truck and a processor. The system further includes computer-readable memory in communication with the processor and having stored thereon computer-executable instructions to cause the processor to receive a desired trajectory and a vehicle status of the semi-truck, determine a dynamic model of the semi-truck based on the desired trajectory and the vehicle status, determine at least one quadratic program (QP) problem based on the dynamic model, generate at least one control command for controlling the semi-truck by solving the at least one QP problem, and provide the at least one control command to the one or more control mechanisms.
-
公开(公告)号:US11372403B2
公开(公告)日:2022-06-28
申请号:US16181110
申请日:2018-11-05
Applicant: TuSimple, Inc.
Inventor: Aaron Havens , Jun Chen , Yujia Wu , Haoming Sun , Zijie Xuan , Arda Kurt
Abstract: Systems and methods for dynamic predictive control of autonomous vehicles are disclosed. In one aspect, an in-vehicle control system for a semi-truck includes one or more control mechanisms configured to control movement of the semi-truck and a processor. The system further includes computer-readable memory in communication with the processor and having stored thereon computer-executable instructions to cause the processor to receive a desired trajectory and a vehicle status of the semi-truck, determine a dynamic model of the semi-truck based on the desired trajectory and the vehicle status, determine at least one quadratic program (QP) problem based on the dynamic model, generate at least one control command for controlling the semi-truck by solving the at least one QP problem, and provide the at least one control command to the one or more control mechanisms.
-
-
-
-
-
-
-
-
-