Abstract:
A method for fabricating semiconductor device includes the steps of: forming a first fin-shaped structure on a substrate; forming a first single diffusion break (SDB) structure in the first fin-shaped structure; forming a first gate structure on the first SDB structure and a second gate structure on the first fin-shaped structure; forming an interlayer dielectric (ILD) layer around the first gate structure and the second gate structure; forming a patterned mask on the first gate structure; and performing a replacement metal gate (RMG) process to transform the second gate structure into a metal gate.
Abstract:
A fin shaped structure and a method of forming the same. The method includes providing a substrate having a first fin structure and a second fin structure. Next, an insulation material layer is formed on the substrate. Then, a portion of the first fin structure is removed, to form a first recess. Following this, a first buffer layer and a first channel layer are formed sequentially in the first recess. Next, a portion of the second fin structure is removed, to form a second recess. Then, a second buffer layer and a second channel layer are formed in the second recess sequentially, wherein the second buffer layer is different from the first buffer layer.
Abstract:
A method for fabricating substrate of a semiconductor device includes the steps of: providing a first silicon layer; forming a dielectric layer on the first silicon layer; bonding a second silicon layer to the dielectric layer; removing part of the second silicon layer and part of the dielectric layer to define a first region and a second region on the first silicon layer, wherein the remaining of the second silicon layer and the dielectric layer are on the second region; and forming an epitaxial layer on the first region of the first silicon layer, wherein the epitaxial layer and the second silicon layer comprise same crystalline orientation.
Abstract:
A method for fabricating substrate of a semiconductor device is disclosed. The method includes the steps of: providing a first silicon layer; forming a dielectric layer on the first silicon layer; bonding a second silicon layer to the dielectric layer; removing part of the second silicon layer and part of the dielectric layer to define a first region and a second region on the first silicon layer, wherein the remaining of the second silicon layer and the dielectric layer are on the second region; and forming an epitaxial layer on the first region of the first silicon layer, wherein the epitaxial layer and the second silicon layer comprise same crystalline orientation.
Abstract:
A fin shaped structure and a method of forming the same. The method includes providing a substrate having a first fin structure and a second fin structure. Next, an insulation material layer is formed on the substrate. Then, a portion of the first fin structure is removed, to form a first recess. Following this, a first buffer layer and a first channel layer are formed sequentially in the first recess. Next, a portion of the second fin structure is removed, to form a second recess. Then, a second buffer layer and a second channel layer are formed in the second recess sequentially, wherein the second buffer layer is different from the first buffer layer.
Abstract:
A transistor structure is provided in the present invention. The transistor structure includes: a substrate comprising a N-type well, a gate disposed on the N-type well, a spacer disposed on the gate, a first lightly doped region in the substrate below the spacer, a P-type source/drain region disposed in the substrate at two sides of the gate, a silicon cap layer covering the P-type source/drain region and the first lightly doped region and a silicide layer disposed on the silicon cap layer, and covering only a portion of the silicon cap layer.
Abstract:
Provided is a method of fabricating a MOS device including the following steps. At least one gate structure is formed on a substrate, wherein the gate structure includes a gate conductive layer and a hard mask layer disposed on the gate conductive layer. A first implant process is performed to form source and drain extension regions in the substrate, wherein the gate conductive layer is covered by the hard mask layer. A process is of removing the hard mask layer is performed to expose the surface of the gate conductive layer. A second implant process is performed to form pocket doped regions in the substrate, wherein the gate conductive layer is not covered by the hard mask layer.
Abstract:
Provided is a method of fabricating a MOS device including the following steps. At least one gate structure is formed on a substrate, wherein the gate structure includes a gate conductive layer and a hard mask layer disposed on the gate conductive layer. A first implant process is performed to form source and drain extension regions in the substrate, wherein the gate conductive layer is covered by the hard mask layer. A process is of removing the hard mask layer is performed to expose the surface of the gate conductive layer. A second implant process is performed to form pocket doped regions in the substrate, wherein the gate conductive layer is not covered by the hard mask layer.
Abstract:
A memory device includes a first memory cell, a second memory cell, a word line, a bit line, a first source line and a second source line. The first memory cell includes a control terminal, a data terminal and a source terminal. The first memory cell includes a control terminal, a data terminal and a source terminal. The word line is coupled to the control terminal of the first memory cell and the control terminal of the second memory cell. The bit line is coupled to the data terminal of the first memory cell and the data terminal of the second memory cell. The first source line is coupled to the source terminal of the first memory cell for receiving a first source voltage. The second source line is coupled to the source terminal of the second memory cell for receiving a second source voltage.
Abstract:
Provided is a semiconductor structure including a circuit layer, an island-shaped conductive layer, a MRAM cell, a bit line and a conductive via. The circuit layer is disposed on a substrate. The island-shaped conductive layer is disposed on the circuit layer. The MRAM cell is disposed between the island-shaped conductive layer and the circuit layer, and is electrically connected to the island-shaped conductive layer and the circuit layer. The bit line is disposed on the island-shaped conductive layer. The conductive via is disposed between the bit line and the island-shaped conductive layer. The island-shaped conductive layer is in contact with a top surface of the MRAM cell.