Abstract:
A semiconductor structure includes a work function metal layer, a (work function) metal oxide layer and a main electrode. The work function metal layer is located on a substrate. The (work function) metal oxide layer is located on the work function metal layer. The main electrode is located on the (work function) metal oxide layer. A semiconductor process forming said semiconductor structure is also provided.
Abstract:
A manufacturing method of a metal gate structure is provided. First, a substrate covered by an interlayer dielectric is provided. A gate trench is formed in the interlayer dielectric, wherein a gate dielectric layer is formed in the gate trench. A silicon-containing work function layer is formed on the gate dielectric layer in the gate trench. Finally, the gate trench is filled up with a conductive metal layer.
Abstract:
Provided is a method of forming a metal gate including the following steps. A dielectric layer is formed on a substrate, wherein a gate trench is formed in the dielectric layer and a gate dielectric layer is formed in the gate trench. A first metal layer is formed in the gate trench by applying a AC bias between a target and the substrate during physical vapor deposition. A second metal layer is formed in the gate trench by applying a DC bias between the target and the substrate during physical vapor deposition.
Abstract:
A method for fabricating buried word line of a dynamic random access memory (DRAM) includes the steps of: forming a trench in a substrate; forming a first conductive layer in the trench; forming a second conductive layer on the first conductive layer, in which the second conductive layer above the substrate and the second conductive layer below the substrate comprise different thickness; and forming a third conductive layer on the second conductive layer to fill the trench.
Abstract:
A semiconductor device includes a gate structure on a substrate, in which the gate structure includes a silicon layer on the substrate, a titanium nitride (TiN) layer on the silicon layer, a titanium (Ti) layer between the TiN layer and the silicon layer, a metal silicide between the Ti layer and the silicon layer, a titanium silicon nitride (TiSiN) layer on the TiN layer, and a conductive layer on the TiSiN layer.
Abstract:
A method of manufacturing a semiconductor device for preventing row hammering issue in DRAM cell, including the steps of providing a substrate, forming a trench in the substrate, forming a gate dielectric conformally on the trench, forming an n-type work function metal layer conformally on the substrate and the gate dielectric, forming a titanium nitride layer conformally on the n-type work function metal layer, and filling a buried word line in the trench.
Abstract:
A semiconductor device includes a gate structure on a substrate, in which the gate structure includes a silicon layer on the substrate, a titanium nitride (TiN) layer on the silicon layer, a titanium (Ti) layer between the TiN layer and the silicon layer, a metal silicide between the Ti layer and the silicon layer, a titanium silicon nitride (TiSiN) layer on the TiN layer, and a conductive layer on the TiSiN layer.
Abstract:
A fabricating method of a semiconductive element includes providing a substrate, wherein an amorphous silicon layer covers the substrate. Then, a titanium nitride layer is provided to cover and contact the amorphous silicon layer. Later, a titanium layer is formed to cover the titanium nitride layer. Finally, a thermal process is performed to transform the titanium nitride layer into a nitrogen-containing titanium silicide layer.
Abstract:
A semiconductor device includes a substrate, a dielectric layer, a first tungsten layer, an interface layer and a second tungsten layer. The dielectric layer is disposed on the substrate and has a first opening and a second opening larger than the first opening. The first tungsten layer is filled in the first opening and is disposed in the second opening. The second tungsten layer is disposed on the first tungsten layer in the second opening, wherein the second tungsten layer has a grain size gradually increased from a bottom surface to a top surface. The interface layer is disposed between the first tungsten layer and the second tungsten layer, wherein the interface layer comprises a nitrogen containing layer. The present invention further includes a method of forming a semiconductor device.
Abstract:
A method for fabricating semiconductor device includes the steps of: forming a silicon layer on a substrate; forming a metal silicon nitride layer on the silicon layer; forming a stress layer on the metal silicon nitride layer; performing a thermal treatment process; removing the stress layer; forming a conductive layer on the metal silicon nitride layer; and patterning the conductive layer, the metal silicon nitride layer, and the silicon layer to form a gate structure.