Abstract:
Systems and methods of pre-allocating identifiers to wireless devices for use in requesting resources over a random access channel are described. A wireless communication system includes a random access channel over which wireless devices can anonymously send requests for resources. The base stations receiving and processing the anonymous requests reduces the probability of random access channel collisions and conserves the resources needed to support the anonymous requests by pre-allocating one or more identifiers to select wireless devices. The wireless devices having the pre-allocated codes can transmit a particular code over the random access channel as a request for resources that uniquely identifies the requester.
Abstract:
Systems and methods of pre-allocating identifiers to wireless devices for use in requesting resources over a random access channel are described. A wireless communication system includes a random access channel over which wireless devices can anonymously send requests for resources. The base stations receiving and processing the anonymous requests reduces the probability of random access channel collisions and conserves the resources needed to support the anonymous requests by pre-allocating one or more identifiers to select wireless devices. The wireless devices having the pre-allocated codes can transmit a particular code over the random access channel as a request for resources that uniquely identifies the requester.
Abstract:
A method of encapsulating data and a single frequency network configured to perform the method are disclosed. A content stream of data packets is received, and the data packets in the content stream are formatted in accordance with a first protocol. Information identifying a container size established for the content stream is received. The data packets formatted in accordance with the first protocol are fragmented and packed to form data units formatted in accordance with a second protocol, and the data units are sized based on the container size. The data units formatted in accordance with the second protocol are encapsulated to form second protocol data packets. The second protocol data packets are provided to a transmitter that is synchronized to one or more transmitters in a single frequency network so that each transmitter in the single frequency network broadcasts a same signal that includes the second protocol data packets.
Abstract:
An advanced technology frame structure is described herein. The advanced technology frame structure can enhance a first technology frame structure in dimensions of time, frequency, or a combination of time and frequency. A second technology frame structure time division multiplexes second technology subframes with the first technology downlink and uplink subframes. The first technology downlink subframe can be divided into a first technology downlink subframe and one or more second technology downlink subframes. Similarly, the first technology uplink subframe can be divided into a first uplink subframe and one or more second technology uplink subframes. These principles can be expanded upon and can be applied in many communication systems.
Abstract:
A method of wireless communication including a base station transmitting a preamble including information indicating a sector identifier and an antenna port value. The base station further transmits a pilot sequence, wherein the pilot sequence and the location of the pilot sequence are based on the sector identifier and on the antenna port value. A base station configured to perform the method is also disclosed. A corresponding subscriber station configured to receive the preamble and pilot sequence is also disclosed, as well as a subscriber station method.
Abstract:
A method of encapsulating data and a single frequency network configured to perform the method are disclosed. A content stream of data packets is received, and the data packets in the content stream are formatted in accordance with a first protocol. Information identifying a container size established for the content stream is received. The data packets formatted in accordance with the first protocol are fragmented and packed to form data units formatted in accordance with a second protocol, and the data units are sized based on the container size. The data units formatted in accordance with the second protocol are encapsulated to form second protocol data packets. The second protocol data packets are provided to a transmitter that is synchronized to one or more transmitters in a single frequency network so that each transmitter in the single frequency network broadcasts a same signal that includes the second protocol data packets.
Abstract:
A method of wireless communication including a base station transmitting a preamble including information indicating a sector identifier and an antenna port value. The base station further transmits a pilot sequence, wherein the pilot sequence and the location of the pilot sequence are based on the sector identifier and on the antenna port value. A base station configured to perform the method is also disclosed. A corresponding subscriber station configured to receive the preamble and pilot sequence is also disclosed, as well as a subscriber station method.
Abstract:
Systems and methods of pre-allocating identifiers to wireless devices for use in requesting resources over a random access channel are described. A wireless communication system includes a random access channel over which wireless devices can anonymously send requests for resources. The base stations receiving and processing the anonymous requests reduces the probability of random access channel collisions and conserves the resources needed to support the anonymous requests by pre-allocating one or more identifiers to select wireless devices. The wireless devices having the pre-allocated codes can transmit a particular code over the random access channel as a request for resources that uniquely identifies the requester.
Abstract:
Methods and apparatus are described for mitigating intercell interference in wireless communication systems utilizing substantially the same operating frequency band across multiple neighboring coverage areas. The operating frequency band may be shared across multiple neighboring or otherwise adjacent cells, such as in a frequency reuse one configuration. The wireless communication system can synchronize one or more resource allocation regions or zones across the multiple base stations, and can coordinate a permutation type within each resource allocation zone. The base stations can coordinate a pilot configuration in each of a plurality of coordinated resource allocation regions. Subscriber stations can be assigned resources in a coordinated resource allocation region based on interference levels. A subscriber station can determine a channel estimate for each of multiple base stations in the coordinated resource allocation region to mitigate interference.
Abstract:
Methods and apparatus are described for mitigating intercell interference in wireless communication systems utilizing substantially the same operating frequency band across multiple neighboring coverage areas. The operating frequency band may be shared across multiple neighboring or otherwise adjacent cells, such as in a frequency reuse one configuration. The wireless communication system can synchronize one or more resource allocation regions or zones across the multiple base stations, and can coordinate a permutation type within each resource allocation zone. The base stations can coordinate a pilot configuration in each of a plurality of coordinated resource allocation regions. Subscriber stations can be assigned resources in a coordinated resource allocation region based on interference levels. A subscriber station can determine a channel estimate for each of multiple base stations in the coordinated resource allocation region to mitigate interference.