Abstract:
A spill proof, user-friendly dispensing system that protects users from exposure to toxic fluids (e.g., Ethylene Glycol used in MICR ink) includes a bottle loading mechanism for feeding ink or other fluids to a respective supply tank of an image forming device, and a quick connect gravity feed multipurpose bottle apparatus. Ink replenishing bottles can be inserted upright into holder of the bottle loading mechanism, connected to a supply tank, and folded back out-of-the-way in a dispensing position. The bottle may be rotated from a gravity feed position to a rotated position for removal and installation while the bottle remains in the holder. The bottle when empty may be used to collect waste from the image forming device.
Abstract:
Printer structures include a controller, a marking engine operatively (meaning directly or indirectly) connected to the controller, and a container connected to the marking engine. The marking engine applies marking material to print media, and the container stores that marking material. The container can include a flexible bladder storing the marking material, and an actuator structure operatively connected to the controller. The actuator structure contacts the flexible bladder and periodically moves portions of the bladder to periodically mix the marking material as controlled by the controller (based on the marking engine being idle for a previously established amount of time). Alternatively, the actuator structure contacts the container can periodically rotate the container to periodically mix the marking material as controlled by the controller.
Abstract:
A spill proof, user-friendly dispensing system that protects users from exposure to toxic fluids (e.g., Ethylene Glycol used in MICR ink) includes a bottle loading mechanism for feeding ink or other fluids to a respective supply tank of an image forming device, and a quick connect gravity feed multipurpose bottle apparatus. Ink replenishing bottles can be inserted upright into holder of the bottle loading mechanism, connected to a supply tank, and folded back out-of-the-way in a dispensing position. The bottle may be rotated from a gravity feed position to a rotated position for removal and installation while the bottle remains in the holder. The bottle when empty may be used to collect waste from the image forming device.
Abstract:
A cart that helps eliminate contaminants from a printing system with a rail support track includes a platform, a first bearing, and a first blade. The first bearing is operatively connected to the platform, and is positioned and configured to roll along a first cylindrical rail of a rail support track of a printing system to enable the platform to move along the first cylindrical rail. The first blade has a leading edge oriented at an acute angle relative to a curved surface of the first cylindrical rail, and is configured to engage the curved surface to remove contaminant as the cart moves along the first cylindrical rail.
Abstract:
A printing system for forming three-dimensional objects includes two laterally spaced rails, each of the rails have an internal cavity extending through the rail along a longitudinal axis. The printing system further includes two heating devices, one heating device is connected to the internal cavity of one of the two laterally spaced rails and the other heating device is connected to the internal cavity of the other of the two laterally spaced rails to enable each heating device to heat a surface of the rail in which the heating device is positioned. The printing system further includes a platform configured to move along the laterally spaced rails. The printing system also includes at least one of a pair of scrapers, wiper pads, and wiper blades mounted to the cart.
Abstract:
An apparatus detects inoperative inkjets during printing. The apparatus includes a light transmitting substrate onto which a test pattern of material is ejected. A light source directs light into the substrate and an optical sensor generates image data of a surface of the substrate. Light propagates through the substrate unless it reaches a position where the material is present on the surface. Thus, the material emits light so a contrast exists between the surface of the substrate and the material emitting light. By comparing the image data to the positions of the light emitting areas on the surface, inoperative inkjets are detected.
Abstract:
A melting device melts solid ink into liquid ink by passing alternating current through an electrical conductor arranged in coils around a housing. The liquid ink passes from a reservoir, through a spool valve arrangement, and into first and second chambers. The spool valve arrangement only allows liquid ink into one chamber at a time. While the first chamber is being filled, pressure is applied to the second chamber. The pressure applied to the second chamber forces the liquid ink in the second chamber through a filter and an outlet. When the first chamber is filled to a predetermined level, pressure is no longer applied to the second chamber and is applied to the first chamber. The pressure applied to the first chamber moves the spool valve arrangement to block the first chamber. While pressure is applied to the first chamber, the second chamber is filled with liquid ink.
Abstract:
A three-dimensional (3D) metal object manufacturing apparatus has a build platform heater that is configured with a plurality of temperature sensors and heating elements distributed throughout the heater. The signals generated by the temperature sensors are monitored by a controller and when one of the signals is outside of a temperature range around a temperature setpoint for the heater, the controller adjusts a PWM signal operating a switch that connects the heating element corresponding to the temperature sensor that generated the signal outside of the temperature range. The temperature sensors and heating elements are distributed in a plurality of cells that border one another in a contiguous pattern.
Abstract:
A registration system for a printing device and a method for controlling the same are disclosed. For example, the registration system includes at least one sensor to detect a position of a print media, a platform comprising a plurality of cellular omni wheels, and a processor communicatively coupled to the at least one sensor and the plurality of cellular omni wheels, wherein the processor calculates a desired movement of each one of the plurality of cellular omni wheels based on the position of the print media.
Abstract:
A method, non-transitory computer readable medium and apparatus for forming an image on a three dimensional (3D) object are disclosed. For example, the method includes, detecting the 3D object that is formed from a first material is positioned on a movable bed, providing a bed of a powder of a second material on the movable bed around the 3D object, vibrating the bed of powder to provide a level surface of the powder, sintering a portion of the bed of the powder onto the 3D object, moving the 3D object and repeating the providing, the vibrating, the sintering and the moving to form the image onto the 3D object.