Abstract:
A multi-cylinder engine for driving a vehicle is provided. The multi-cylinder engine includes a plurality of cylinders. The engine also includes a multi-throttle valve device having a plurality of air-intake passages, each of which being configured to lead air to the respective cylinder, and a plurality of throttle valves, each of which being configured to open and close the respective air-intake passage. At least one of the throttle valves is configured to be opened and closed independently of at least one of the other throttle valves.
Abstract:
A method and device for processing self-diagnostic information relating to an operating state of a jet-propulsion personal watercraft to display the self-diagnostic information on a display device equipped in the personal watercraft. The method typically includes the steps of obtaining operating state information relating to the operating state of the watercraft, performing self-diagnosis of the operating state of the watercraft based on the obtained operating state information to obtain diagnostic data, determining whether or not an abnormality exists in the diagnostic data, determining whether or not an operation condition of an engine mounted in the watercraft meets a predetermined operation condition, the engine being configured to propel the watercraft, and outputting information of the abnormality to the display device based on a result obtained in the step of determining whether or not the abnormality exists in the diagnostic data and based on a result obtained in the step of determining whether or not the engine meets the predetermined operation condition.
Abstract:
A stand-up type personal watercraft comprises a body including a hull and a deck covering the hull from above, the body having a foot deck at a rear portion of the deck, on which an operator rides, a water jet pump configured to propel the watercraft, and a four-cycle multi-cylinder engine provided within the body and configured to drive the water jet pump, wherein the engine is disposed forward of the foot deck within the body and substantially at a center position in a longitudinal direction of the body.
Abstract:
A personal watercraft comprises an engine, a sensor configured to detect an operating state of the engine, a control device configured to control an operation of the engine based on a detection signal from the sensor, and a display device including a first display portion configured to output a state of the watercraft based on data output from the control device, wherein the display device includes a storage portion configured to store the data output from the control device.
Abstract:
An exhaust passage configured to discharge an exhaust gas from an engine of a small watercraft, comprises at least a first exhaust pipe, a second exhaust pipe connected to the first exhaust pipe, and a connecting structure configured to connect the first exhaust pipe and the second exhaust pipe to each other, the connecting structure including a first tubular insertion end portion provided at a connecting end portion of the first exhaust pipe so as to protrude toward a connecting end portion of the second exhaust pipe, a second tubular insertion end portion provided at the connecting end portion of the second exhaust pipe so as to accommodate the first tubular insertion end portion of the first exhaust pipe, a ring groove formed to extend circumferentially over an entire outer peripheral face of the first insertion end portion, and a seal ring configured to engage in the ring groove.
Abstract:
Disclosed is an engine of a personal watercraft having a water jet pump at a rear end thereof, in which a center of gravity of the engine is located rearward for improvement of planing capability of the watercraft. The engine comprises: a crankcase having a front end wall and a rear end wall; a crankshaft provided inside the crankcase; a generator provided at an output end portion of the crankshaft, the generator including a rotor fixed to the crankshaft; a starter motor provided on an output end side of the crankshaft outside the crankcase; and a clutch provided between the starter motor and the rotor of the generator, for connecting/disconnecting the starter motor to/from the rotor.
Abstract:
A first exhaust chamber and a second exhaust chamber are disposed within a body of a watercraft. The first exhaust chamber communicates with an exhaust port of an engine through a first exhaust pipe. A first space of the first exhaust chamber communicates with the second exhaust chamber through a first inverted-U shaped pipe. The second exhaust chamber communicates with another space of the first exhaust chamber through a second inverted-U shaped pipe. The first and second inverted-U shaped pipes are each positioned in the flow path of the exhaust gas and bent to be substantially inverted-U shaped. The other space of the first exhaust chamber communicates with an outside of the body through a second exhaust pipe. An uppermost portion of the first inverted-U shaped pipe and an uppermost portion of the second inverted-U shaped pipe are located higher than a waterline of the watercraft.
Abstract:
Disclosed is a personal watercraft capable of preventing oil flow from an engine to a breather device. The personal watercraft comprises: a four-cycle engine; a water jet pump driven by the engine, the water jet pump pressurizing and accelerating water taken in from outside of the watercraft and ejecting the water from the outlet port to propel the watercraft as a reaction of the ejecting water; a breather pipe configured such that a base end is connected to the engine to communicate with an inside of the engine, an intermediate portion is located lower than the base end, and a tip end is located higher than the base end; and a breather box, wherein the tip end of the breather pipe communicates with inside of the breather box and the base end of the breather pipe is located lower than the breather box.
Abstract:
Disclosed is a jet-propulsion personal watercraft adapted to eject water pressurized and accelerated by a water jet pump from an outlet port so as to be propelled as the resulting reaction, the personal watercraft being provided with a cruising control switch to allow an electric control unit to control a throttle actuator in accordance with an operation of the cruising control switch so that the watercraft cruises at a predetermined cruising speed or engine speed.
Abstract:
Disclosed is a leisure vehicle comprising a throttle device. The leisure vehicle comprises an engine; a switch operated when the engine starts; and a throttle device for controlling an engine speed of the engine, and the throttle device includes: a throttle operation means for controlling the engine speed; a throttle position sensor for detecting an operation state of the throttle operation means; a throttle valve for opening and closing an air-intake passage of the engine; an actuator for opening and closing the throttle valve; and a control unit for controlling the actuator for opening and closing the throttle valve according to a value of a detection signal output from the throttle position sensor, wherein the control unit is adapted to perform zero setting of the throttle valve such that the throttle valve is operated according to the value of the detection signal with the throttle operation means in a fully closed state, when the switch is operated.