Abstract:
Methods and devices for isolating nucleic acids from a mixture containing such nucleic acids and extraneous matter are provided. In one embodiment, the method of the invention comprises passing the mixture through a glass frit under conditions effective to separate the nucleic acids from the extraneous matter. In a more specific embodiment, the glass frit is a sintered glass frit.
Abstract:
A microbicidal filter system having superior drop pressure and low complexity is provided, as well as a method for producing the same. The system comprises a plurality of glass beads having pores formed therebetween for the flow of air therethrough. The sintered glass beads are coated in a transition metal oxide and water. An ultraviolet light source is used to cause a photocatalytic reaction between the transition metal oxide and water. Free hydroxyl radicals with microbicidal properties are produced. Urethane foam may be inserted between the glass beads before sintering in order to cause a bimodal pore size distribution, and particulates disposed on the glass beads may be added to alter surface activity.
Abstract:
A dimensionally stable, flow-porous fluid treatment element suitable for hot fluid treatment, in particular a filter element, characterized by the following components: (a) inorganic solid particles with inner voids; and (b) hardened binder on a water glass base, (c) the binder holding together the solid particles to form the flow-porous fluid treatment element.
Abstract:
Provided is a ceramic porous body which uses a binder made of a glass excellent in acid resistance and alkali resistance which can be used for a long period of time as a filtration filter etc. This ceramic porous body is formed from ceramic particles bonded by using a binder which is a glass comprising 5 to 20 mol % of a plural kind of metal oxides, said metal oxides being selected from the group consisting of Li2O, Na2O, K2O, MgO, CaO, SrO and BaO and containing at least two alkali metal oxides among Li2O, Na2O and K2O as an essential component, 3 mol % or more of either or both of ZrO2 and TiO2 as a total amount, and SiO2 and incidental impurities as a balance.
Abstract:
A filtration article is disclosed comprising a plugged porous honeycomb filter body, deposits of inorganic particles within the plugged honeycomb filter body, the deposits having a porosity in a range of greater than 95% to less than or equal to 99.9% and an average thickness in a range of greater than or equal to 0.5 μm to less than or equal to 200 μm, and at least some of the inorganic particles being fused to each other and/or to the filter body. The particles are fused by one or more of low-melting inorganic particles, inorganic particles capable of chemical bonding organic fusion bonds or organic chemical bonds between inorganic particles coated with an organic binder.
Abstract:
The present invention relates to vacuum cleaner filter bags composed of waste products of the textile industry. In addition, possibilities of use for waste products of the textile industry for vacuum cleaner filter bags are provided. The vacuum cleaner filter bag comprising a wall surrounding an inner space and composed of an air-permeable material and an inlet opening introduced into the wall, characterized in that the air-permeable material comprises at least one layer of a nonwoven that comprises fibrous and/or pulverulent recycled textile material and/or cotton linters, with the specific volume of the layer of the nonwoven amounting to at least 20 cm3/g.
Abstract:
A method for fabrication of ordinary porous media and fractured porous media with controllable characteristics is disclosed. The method comprises the steps of: providing a cylindrical container and sealing one end of the cylindrical container. The method further comprises fastening the sealed end of the cylindrical container with a lacy sheet for connecting to a vacuum pump and packing the cylindrical container with glass beads to achieve predetermined porosity and permeability using vacuum. Finally placing the packed container in a furnace until reaching a retention time at a predefined rate of temperature enhancement, and separating a fabricated core from the packed container.
Abstract:
A composite structure includes a substrate with pores of a first mean pore size and a coating on at least one surface of that substrate. This coating has pores of a second mean pore size where the first mean pore size is equal to or greater than said second mean pore size. When the pore size of the coating is effective to capture particulate greater than 0.2 micron, the composite may be formed into a filter effective to remove microbes from a fluid medium. One method to form the porous coating on the substrate includes: (1) forming a suspension of sinterable particles in a carrier fluid and containing the suspension in a reservoir; (2) maintaining the suspension by agitation; (3) transferring the suspension to an ultrasonic spray nozzle; (4) applying a first coating of the suspension to the substrate; and (5) sintering the sinterable particles to the substrate.
Abstract:
Methods and devices for isolating nucleic acids from a mixture containing such nucleic acids and extraneous matter are provided. In one embodiment, the method of the invention comprises passing the mixture through a glass frit under conditions effective to separate the nucleic acids from the extraneous matter. In a more specific embodiment, the glass frit is a sintered glass fit.