Abstract:
The invention includes a non-magnetic physical vapor deposition target. The target has at least 30 atom percent total of one or more of Co, Ni, Ta, Ti, Pt, Mo and W, and at least 10 atom percent silicon. The target also has one phase and not more than 1% of any additional phases other than said one phase. In another aspect, the invention includes a non-magnetic physical vapor deposition target consisting essentially of Co and/or Ni, silicon, and one phase.
Abstract:
A method for metal processing is provided in which a cooling atmosphere comprising hydrogen is used for accelerated cooling of a processed metal part in a furnace, resulting in improved properties for the metal part. A sintering furnace is also provided and comprises a means for inhibiting gas flows between a heating zone and a cooling zone of the furnace.
Abstract:
Described is an in situ method for producing articles of metal aluminide or silicide by reactive sintering and vacuum hot pressing powders and products, such as sputtering targets, produced.
Abstract:
An object of the present invention is to provide a method for manufacturing a metal printed object that can reduce the generation of sputters, and the present invention provides a method for manufacturing a metal printed object in which, in the presence of a shielding gas supplied around metal powder in a chamber, heat is supplied to the metal powder using energy rays to form a metal layer and laminate the metal layer, wherein the mass per unit volume of the shielding gas at a temperature of 25° C. and a pressure of 0.1 MPa is 1.30×10−3 g/cm3 or less.
Abstract:
An additive manufacturing machine may include a beam source, a process chamber, a beam column operably coupled to the process chamber and/or defining a portion of the process chamber, and a gaseous ionization detector disposed about the beam column. The gaseous ionization detector may be configured to detect elementary particles corresponding to an ionizing gas ionized by an energy beam from the beam source. A method of additively manufacturing a three-dimensional object may include determining data from a gaseous ionization detector disposed about a beam column of an additive manufacturing machine, and additively manufacturing a three-dimensional object using the additive manufacturing machine based at least in part on the data from the gaseous ionization detector. A computer-readable medium may include computer-executable instructions, which when executed by a processor associated with an additive manufacturing machine, cause the additive manufacturing machine to perform a method in accordance with the present disclosure.
Abstract:
According to the present invention a method is provided for feeding a gas flow to an additive manufacturing space during a manufacturing process wherein the gas flow is established by a pump connected to the manufacturing space wherein the pump is controlled by a set differential pressure, and wherein the gas flow consists of Helium or the gas flow consists of a gas mixture comprising 30 Vol.-% Argon and 70 Vol.-% Helium or the gas flow consists of a gas mixture comprising 50 Vol.-% Argon and 50 Vol.-% Helium or the gas flow consists of a gas mixture comprising 70 Vol.-% Argon and 30 Vol.-% Helium.
Abstract:
Methods are provided for producing alloy forms from alloys containing one or more extremely reactive elements and for fabricating a component therefrom. The fabricating method comprises substantially removing a reactive gas from the fabrication environment. An alloy form of the alloy is formed. The alloy form is formed by melting the alloy or by melting one or more base elements of the alloy to produce a molten liquid and introducing the one or more extremely reactive elements into the molten liquid. The molten alloy is shaped into the alloy form. The component is formed from the alloy form. If the one or more extremely reactive elements are introduced into the molten liquid, such introduction occurs just prior to the shaping step.
Abstract:
An additive manufacturing apparatus comprises a processing chamber (100) defining a window (110) for receiving a laser beam and an optical module (10) The optical module is removably-mountable to the processing chamber for delivering the laser beam through the window. The optical module contains optical components for focusing and steering the laser beam and a controlled atmosphere can be maintained within the module.
Abstract:
A method of making polycrystalline CBN compacts, high in CBN content, is provided. The method includes making a powdered composition by subjecting a mixture of CBN, present in an amount of at least 80 volume percent of the mixture, and a powdered binder phase to attrition milling. This powdered mixture is subjected to conditions of elevated temperature and pressure suitable to produce CBN compacts.
Abstract:
The invention utilizes a carbon nano material to nanotize a magnesium-based hydrogen storage material, thereby forming single or multiple crystals to enhance the surface to volume ratio and hydrogen diffusion channel of the magnesium-based hydrogen storage material. Therefore, the hydrogen storage material has higher hydrogen storage capability, higher absorption/desorption rate, and lower absorption/desorption temperature.