Abstract:
The present invention relates to a process for continuously preparing a mononitrated organic compound, especially a process for preparing mononitrobenzene. The invention relates more particularly to an improved continuous adiabatic process for preparing nitrobenzene.
Abstract:
Disclosed are a process and an apparatus for concentrating an organic acid by using a nitroalkane as an entrainer for the azeotropic removal of water from an aqueous organic acid solution. The nitroalkane may be the same as a nitroalkane that is the product of a high pressure nitration process that produces nitroalkanes and aqueous organic acid.
Abstract:
The present invention relates to a continuous process for the production of nitrobenzene by nitration of benzene with nitric acid or mixtures of nitric acid and sulfuric acid to give a crude nitrobenzene, washing of the crude nitrobenzene by means of at least one of each of an acid, alkaline and neutral washing, there being obtained a pre-purified nitrobenzene which, as well as containing nitrobenzene, at least contains also low boilers, optionally middle boilers as well as high boilers and salts, wherein the pre-purified nitrobenzene is purified further by separating off low boilers in a distillation apparatus by evaporation of the low boilers, and separation of nitrobenzene from the resulting further purified nitrobenzene in a distillation apparatus by partial evaporation of nitrobenzene, wherein pure nitrobenzene is removed from the distillation apparatus in gaseous form and is subsequently condensed, and wherein the non-evaporated portion of the further purified nitrobenzene is fed back into the washing at any desired point.
Abstract:
The invention relates to a process for the continuous production of nitrobenzene by nitration of benzene with a mixture of nitric acid and sulfuric acid under adiabatic conditions, in which unreacted benzene is separated from the crude product obtained after phase separation before washing thereof, using the adiabatic heat of reaction.
Abstract:
Disclosed are a process and apparatus for synthesizing nitroalkanes by reaction of a hydrocarbon feedstock with aqueous nitric acid. Energy and capital costs may be reduced by using a dividing wall column.
Abstract:
Provided are methods for the synthesis of heterocyclic compounds such as benzimidazole carboxylic acid core structures having Formula Ib-1: wherein Z, X1, X2, X5, R2b and R10 are as defined herein. Compounds of Formula Ib-1 can be used to prepare heterocyclic derivatives such as benzimidazole derivatives.
Abstract:
A process for the preparation of mononitroaromatics and dinitroaromatics, in which a hydrate melt of at least one metal nitrate M(NO3)3 is used as a nitrating medium, it being possible for M to be the metals Fe, Cr, Y, La, Ce, Al, Bi and In, and the metal nitrate having a water content of from 4 to 9 mol of water per M(NO3)3, leads to simplifications of the process and improved yields.
Abstract:
The present invention relates to a novel process for producing quinazoline compounds which are useful in therapy. More specifically, the compounds produced by the process of the invention are useful in the treatment of a number of cardiovascular diseases. The process of the invention provides 6,7-dichloro-1,5- dihydroimidazo [2,1 -b] quinazolin 2 (3H)-one, more commonly known as anagrelide and its analogues in a clean and efficient manner.
Abstract:
A process is provided for the preparation of 1,3-dihalo-4,6-dinitrobenzene by the nitration of 1,3-dihalobenzene. The direct isolation of highly pure 1,3-dihalo-4,6-dinitrobenzene is accomplished without a water or ice quench, and involves the use of at least one equivalent of SO3 during the reaction, slow crystallization, and isolation of product from a cold crystal slurry.